
Accepted at The 5th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC 2013).

Inspiring Energy Conservation Through Open
Source Metering Hardware and Embedded

Real-Time Load Disaggregation

Stephen Makonin∗†, William Sung‡, Ryan Dela Cruz‡, Brett Yarrow‡, Bob Gill‡, Fred Popowich∗, Ivan V. Bajić§
∗Computing Science and §Engineering Science, Simon Fraser University

†Technology Centre and ‡School of Energy, British Columbia Institute of Technology
Email: {smakonin, popowich, ibajic}@sfu.ca, {Stephen Makonin, Bob Gill}@bcit.ca

Abstract—Utility companies around the world are replacing
electro-mechanical power meters with new smart meters. These
digital power meters have enhanced communication capabilities,
but they are not actually smart. We present the cognitive power
meter (c-meter), a meter that is actually smart. By using load
disaggregation intelligence, c-meter is the realization of demand
response and other smart grid energy conservation initiatives.
Our c-meter is made of two key components: a prototype open
source ammeter and an optimized embedded load disaggregation
algorithm (µDisagg). Additionally, we provide an open source
multi-circuit ammeter array that can build probabilistic appli-
ance (or load) consumption models that are used by the c-meter.
µDisagg is the first load disaggregation algorithm to be imple-
mented on an inexpensive low-power embedded processor that
runs in real-time using a typical/basic smart meter measurement
(current, in A). µDisagg can disaggregate loads with complex
power states with a high degree of accuracy.

Index Terms—embedded software, energy conservation, load
modelling, open source hardware, real-time systems

I. INTRODUCTION

Currently, much of the world is focused on reducing energy
consumption for both economical and ecological sustainability.
One way for homeowners and occupants to reduce energy
consumption is to understand how they consume energy and
adjust their habits accordingly. As utility companies replace
old electro-mechanical power meters with new smart meters
there is hope that this can be achieved if the right information
is presented to the occupants in a timely and convenient
manner through an eco-feedback device or display mecha-
nism. Currently, the display mechanisms promoted by some
utility companies only report aggregate whole-house power
and energy values. Occupants are not given any feedback as
to how their appliances consume energy. Furthermore, with
initiatives such as time-of-day usage charges (peak charges)
and demand response (DR) [1] homeowners are left with little
to no information to work from.

As we noted in a previous paper [2], it is doubtful that
an occupant knows which appliance(s) need to be turned off
to meet an opt-in DR request. With most advanced home
automation systems this can be achieved, but at a high cost
which is a barrier for the majority of home owners. One might
think that a smart meter might do this. However, the smart
meter has no smarts to help the occupant understand what

appliances are running, it is just a digital meter with advanced
communication capabilities.

By adding smarts to a smart meter we can help occupants
participate in the opt-in DR requests. One way to help is to
have intelligence that can discern what appliances are running
from examining the whole-house power reading. This is called
load disaggregation – first developed by Sultanem [3] and then
Hart [4]. A smart meter with load disaggregation is what we
call a cognitive power meter (c-meter, see Figure 1). In the
next sections we will discuss the two key components of the
c-meter: the Precision Ammeter hardware (see Section III) and
the µDisagg load disaggregation firmware (see Section V). As
well, we will discuss our Precision Ammeter Array hardware
(Section IV) that can build up to 60 probabilistic appliance
(or load) consumption models that are used by the c-meter.
µDisagg is a new embedded load disaggregation algorithm
that does not build from existing load disaggregation algo-
rithms published by other researchers. Furthermore, it has
been implemented on an inexpensive low-power embedded
processor running in real-time using the basic current (I, in A)
measurement – unlike any other load disaggregation algorithm
to date. We close with a discussion on interfacing the c-meter
to the smart grid to allow for participation in opt-in demand
response (see Section VII).

II. BACKGROUND

With a c-meter, an in-home display (IHD) can display a list
of appliances or combination of appliances that the occupant
can choose from to meet an opt-in DR request in a timely
and confident fashion. So why is there no c-meter? Load
disaggregation in its current form is not feasible for the typical
home, although some initial attempts in devices such as the
TED-5000 have allowed use in restricted contexts1. There is an
optimization problem–having the algorithm fit on an embedded
processor. Some systems, depending on the machine learning
technique, can have a computational cost of O(nm), where n is
the number of states and m is the number of appliances/loads.
This results in an optimization problem when wanting to

1See the “I want to view more than my overall usage.
How can I monitor an individual appliance?” FAQ question at
http://www.theenergydetective.com/faq (last accessed January 26, 2013).

Copyright c© 2013 IEEE. The original publication is available for download at ieeexplore.ieee.org.



A

Electricity 
Measurement Embedded

Load 
Disaggregation

Memory 
Map

WAN 
Comm IC

HAN 
Comm IC

Optical 
Comm 
Port

HAN 
Comm IC

Amount of Power to Reduce

List of Appliances / Loads
Currently Running

Opt-In?

Demand Response IHD

Fig. 1. The physical components in our Demand Response Model: (left) the cognitive power meter or c-meter and (right) the demand response in-home
display. Note that the Embedded Load Disaggregation module only sends data to devices on the HAN side due to privacy concerns.

implement load disaggregation on an embedded processor.
We can make some assumptions to mitigate the problem of
exponential computational cost. Using discrete measurements,
disaggregation is bound linearly by the maximum current draw
of the house (in Amperes) and of each load. We can also bind
the number of loads to disaggregate to only those loads that
are deferrable (e.g. clothes dryer) and give occupants the best
opportunity to conserve energy. We feel that the number of
desired loads to disaggregate would be 10 – Ziefman [5] has
considered between 10 to 20 appliances although in his work
he only ever evaluates 9 appliances.

There are many privacy concerns that involve load disag-
gregation which centre around utility companies being able
to tell what appliances a homeowner is using, and having the
utility company turn off appliances without a homeowner’s
consent. Our opinion is that the intelligent load disaggregation
part of the c-meter needs to exist on the Home Area Network
(HAN) side of the meter as we noted in Figure 1. If the load
disaggregation module only communicates with devices on the
HAN then privacy concerns should be alleviated [2].

III. THE PRECISION AMMETER

Many researchers have focused on using smart meter data
for their load disaggregation algorithms [5]–[11]. In particular
they use real power measurements (in W). However, after
we performed a study on detailed and long term information
available in our AMPds dataset [12] we found that current (I)
when compared to real power (P) was a better measurement
to use.

Table I shows the result of an analysis we performed on
473,232 data points (per min readings) over 11 months. We
found that real power (W) readings had a high degree of
fluctuation (as high as 59×, see Table I) compared to current
(A). This is due in part to the meter using two sensor readings
(current and voltage) that can both fluctuate independently to
measure real power. Formulae for apparent and real power are
shown in (1)

TABLE I
CURRENT (IN A) vs REAL POWER (IN W) COMPARISON

ID Load Distinct I Distinct P Flux
BME Basement Plugs & Lights 8 387 48×
CDE Clothes Dryer 20 632 32×
CWE Clothes Washer 14 720 51×
DWE Dishwasher 8 270 34×
FGE Kitchen Fridge 17 525 31×
FRE HVAC/Furnace 7 298 43×
HPE Heat Pump 33 1268 38×
TVE Ent TV/PVR/AMP 7 415 59×
WOE Wall Oven 21 646 30×

S = I·V ,
P = S· cos(Θ) = I·V· cos(Θ) ,

(1)

where S is apparent power, P is real power, and Θ is the
angle between voltage (V) and current (I). Compounding this
problem is the fact that branch circuit power meters (BCPM)
measure current at each breaker (using current transformers or
CTs) but measure power from one spot on the breaker power
panel.

A. Hardware Design

There are a number of open source hardware and software
development platforms available to build prototype systems.
We chose the Arduino (http://www.arduino.cc) platform be-
cause of its popularity, support ecosystem, and commitment to
open source. From what we observed in the previous section
we designed an open source Precision Ammeter (see Figure 3)
that would measure the whole-house current used by µDisagg.

We studied projects such as Open Energy Monitor (see
http://openenergymonitor.org/emon/) that sample both voltage
and current waveforms using integral equations. These meth-
ods proved to be processing intensive for the microprocessors



Fig. 2. The schematic of our open source Precision Ammeter for use with the Arduino Due which can read four CTs.

Fig. 3. The open source Precision Ammeter using the Arduino Due and
split-core CT. A maximum of 4 CTs can be connected.

and thus we decided to design circuitry that would accomplish
the same task, but without having the microprocessor exten-
sively sample the waveforms (see Figure 2 for the schematic
and Figure 3 for the final product picture).

With our choice of having a current transformer to sample
the currents of a specific load, we obtained a voltage reading
that would be directly fed into our analog to digital converter
(ADC) on the Arduino Due board. From the output of the
current transformer we obtained a voltage reading that would
range from 0–333mV. This value is sinusoidal and thus we
rectified this signal to obtain instantaneous values of current
being fed through to the load.

The specifications of the Arduino Due board noted that input
ports are limited to a maximum input voltage of 3.3V to ensure
that no damage occurs to the board. The Arduino Due board
allows its users to work with power supplies of 3.3V. Thus to
power up our operational amplifiers (op-amps) we chose to use
the 3.3V power supply along with the MAX1044 charge pump
to create the -3.3V power supply. This allowed our op-amps
to output a maximum of 3.3V and a minimum of -3.3V. As
op-amps saturated before reaching the minimum or maximum
output voltages, the output would never actually reach 3.3V
and the microprocessor’s port maximum input voltage would
never be exceeded. We use a gain of 5 (100kΩ ÷ 20kΩ).

0

1500

3000

0 5.0 10.0 15.0 20.0

C
T 

Se
co

nd
ar

y 
(m

V)

CT Primary (A)

Vin
Vout

Fig. 4. Op-Amp circuit linearity test results. Using a 20A CT we tested
the full CT secondary range (0–333mV). Vin is the voltage input the op-amp
circuit (also the CT secondary voltage) and Vout is the voltage output of the
op-amp circuit that is used by the ADC. Loads were created using 300W
indecent light bulbs.

We performed a linearity test (see Figure 4) to verify that the
op-amp circuit we designed did not saturate when rectifying
an amplifying the CT secondary range (0–333mV). The CTs
we use (primary 200A, 100A, 50A, and 20A) all have the
same secondary output range (0–333mV). The 20A CT was
used for testing due to limitations and safety. We found that
due to different tolerances with resistors the we had an actual
gain of 6.9 not 5.

B. Firmware Design

The firmware of our ammeter was designed to be simple
and accurate when measuring current. To provide accurate
uniform sampling of each CT, we used a timing interrupt
running at 1kHz. We used sliding window averaging (the last
1000 samples) to smooth out any jittering and sudden spikes in
current readings. An I2C interface was also provided to allow
other equipment to receive measurement readings.

IV. THE PRECISION AMMETER ARRAY

The Precision Ammeter Array (a-array) is a multi-circuit
ammeter that consists of a number of element boards or
expansion boards that allow the a-array to expand the number



of CTs being metered and the Data Logger. The a-array
allows us to monitor a large number of breakers to build
load models that µDisagg can use for load disaggregation. The
cost of the CTs alone make the a-array an unlikely candidate
for a permanent multi-point monitoring solution; hence, the
continued need for a small ammeter and load disaggregation
(the c-meter).

A. Hardware Design

Using the same op-amp circuitry (Figure 2) we extended
the design to create the element board. We chose to use
the Teensy 3.0 (http://www.pjrc.com/store/teensy3.html) open
source board rather than the Arduino Due, due to its small
footprint. Each element board can monitor up to 12 CTs and
communicate with the Data Logger via a SPI serial interface.
The Data Logger can have a maximum of 5 element boards
connected to it. This means a total of 60 CTs can be metered.
The limitation in the number of element boards exists mainly
due to the fact that there needs to be a separate chip select
line per element board.

B. The Data Logger

The Data Logger is based on the Arduino Due and uses the
SD Card Shield for logging data. The interface cable that is
used to carry power, ground and the SPI lines was soldered
to the prototyping area of the SD Card Shield. Raw Ampere
readings, as well as load model data, is stored on an SD card at
a maximum rate of 1Hz. After a period of between 2 weeks to
1 month of monitoring, the load models are downloaded and
converted (using a Python script) into a C header file format
and then the data is compiled and uploaded to the c-meter.
This is currently a manual process and there are plans to have
this automated using a wireless protocol such as ZigBee or
WiFi (802.11). These load profiles are the probability mass
functions discussed in the next section.

V. µDISAGG: LOAD DISAGGREGATION

Modern home appliances (even LED lighting) now have
embedded electronics that allow for different modes of opera-
tion creating complex behaviours and not the simple on/off
behaviour2 researchers like to disaggregate [5]. The real
challenge for load disaggregation algorithms is the need to
detect these complex, finite-state appliances and loads. Our
load disaggregation algorithm µDisagg can handle these types
of loads. Our philosophy is that a load has loads at any level–
be it an appliance, room, home, or neighbourhood. For each
load we build a prior knowledge model (a probability mass
function) at any level and then disaggregate it. The next two
subsections discuss our load disaggregation algorithm [12].

A. Single-Measurement Disaggregation

Let there be l independent discrete random variables
X1, X2, . . . , Xl, corresponding to current draws from l loads.

2Hart [4] identified four basic types: simple on/off, finite-state, constantly
on, and continuously variable.

0 1 2 3 4 5
0

0.2

0.4

0 5

Fig. 5. A stem diagram of the example PMF.

Each Xi is the deci-Ampere (dA) measurement of a me-
tered electric load with a probability mass function (PMF)
of pXi

(x), where i is the load index i ∈ {1, 2, ..., l}, x
is a number from a discrete set of possible measurements
x ∈ {0, 1, ...,mi}, and mi is the upper bound imposed by the
breaker that the i-th load is connected to. For example, with dA
measurements on a 15A breaker, we would have mi = 150.
The PMF pXi

(x) is defined as follows:

pXi
(x) =

{
Pr[Xi = x], x ∈ {0, 1, . . . ,mi},
0, otherwise,

(2)

where Pr[Xi = x] is the probability that the cur-
rent draw of the i-th load is x. For example, if the
PMF of Xi is (0.10, 0.05, 0.25, 0.40, 0.20, 0, 0, ...) for x ∈
{0, 1, 2, 3, 4, 5, 6, ...}, then Pr[Xi = 2] = 0.25, so the proba-
bility of the i-th load drawing 2 dA (i.e., 0.2 A) is 0.25.

The probability Pr[Xi = x] is estimated from measurements
over a sample period. For example, if over T measurements,
the current draw x was recorded j times, then Pr[Xi = x] =
j
T . During the sample period each load is metered at a consis-
tent rate of one measurement per minute. This rate determines
the time resolution at which the load disaggregation will be
performed.

TABLE II
AN EXAMPLE PMF

x 0 1 2 3 4 5

j 900 80 100 600 200 100

pXi
(x) 0.3125 0.0278 0.0347 0.2083 0.0694 0.0347

s 0 1

Peaks in PMF pXi(x) are designated as probable load
states s ∈ {0, 1, . . . , Si}, where Si + 1 is the number of
states. The states are assigned by quantizing the range of
possible measurements [0,mi] (without gaps) so that each
quantization bin contains one peak of the PMF. For example,
in Figure 5 and Table II, there are two peaks in the PMF, so
we would model this PMF by a two-state model, with states
being indexed {0, 1}. The probability of each state is the total
probability mass within its quantization bin.

B. MAP disaggregation

A single measurement of the whole-house current draw is
given by

Z = X1 +X2 + ...+Xl, (3)



where Z is the sum of current draws by all loads. We want
to be able to determine the values of Xi’s from the value
of Z. In general, there are multiple combinations of Xi’s that
would produce any given Z, but not all of them have the same
probability. We want to find the combination (X1, X2, ..., Xl)
that is the most probable, given the sum Z, i.e., the one
that maximizes the posterior probability Pr(X1, X2, ..., Xl|Z).
Note that the conditional probability Pr(Z|X1, X2, ..., Xl) = 1
if
∑l

i=1Xi = Z, and 0 otherwise, so by Bayes’ rule we have

Pr(X1, X2, ..., Xl|Z)

=
Pr(Z|X1, X2, ..., Xl)Pr(X1, X2, ..., Xl)

Pr(Z)

=

{
Pr(X1,X2,...,Xl)

Pr(Z) if
∑l

i=1Xi = Z,

0 else.

(4)

Since Pr(Z) is common to all combinations, it does not
make a difference to their rank ordering in terms of proba-
bility. Hence, the MAP solution is the one with the highest
probability Pr(X1, X2, ..., Xl) such that

∑l
i=1Xi = Z. Since

the load current draws are assumed independent, we have
Pr(X1, X2, ..., Xl) =

∏l
i=1 Pr(Xi).

VI. EXPERIMENTAL SETUP & RESULTS

We took our load disaggregation algorithm [12] and made
extensive changes so that it can run on an embedded processor.
First, we changed the whole-house measurements from deci-
Amperes (dA) to whole Amperes (A). We did this to reduce the
amount of distinct current readings which in turn: (1) reduced
the amount of processing time, and (2) reduced the amount of
measurement inaccuracies when using different meters. Differ-
ent meters have different sensors and different measurement
circuits. When comparing one meter with another (even if
other meters are highly accurate) the current readings from the
metered loads can differ by 50mA to 200mA. Secondly, we
rewrote our initial Python algorithm in C++ which allowed us
to simplify and optimize the code for running on an embedded
processor.

Working with embedded processors always presents a chal-
lenge both in processing power and in space (memory and
storage). To this end, we needed to limit how we implemented
MAP. Through data analysis we found that the ground truth
answer nearly always is found in the three most probable cur-
rent levels when disaggregating each load. Thus, we modified
MAP to only store the three most probable current levels for
each load. Then we ran MAP disaggregation to determine the
most like combination of loads running.

We chose 9 diverse loads (or sub-meters) to disaggregate
from our AMPds dataset [12]. Seven sub-meters containing a
single load (CDE, CWE, DWE, FGE, FRE, HPE, WOE), and
2 sub-meters containing multiple loads (BME, TVE). All loads
can be considered finite-state loads. FRE (HVAC/Furnace) is
mainly a constantly on load consisting of a fan and thermostat.
CWE (Clothes Washer) is a front load washer with a variable
speed spinning drum so it is a finite-state load combined with

a continuously variable load. Our initial Python algorithm [12]
was used as a baseline.

A. The Results

Table I shows testing results using our Baseline and µDisagg
algorithms, their run times and accuracies. The disaggregation
of 524,544 data points went from an average run time of
24 minutes for the baseline algorithm, down to an average
of 43 seconds for µDisagg). Nine experiments (one for each
sub-meter) were run to see if single loads could be identified
(or disaggregated) from the whole house reading. Accuracy is
based on the correctness of both: (1) the load being correctly
identified, and (2) Ampere amount is the same as ground truth.
We conducted our experiments using a Python implementation
of the algorithm on a MacBook Air with a 1.8 GHz Core i7
CPU and 4 GB of memory.

TABLE III
LOAD DISAGGREGATION RESULTS

ID
Baseline µDisagg Accuracy

Time Accuracy Time Accuracy Improvement
BME 23 min 77.0% 39 s 87.0% +10.0%
CDE 16 min 97.9% 39 s 98.9% +1.0%
CWE 33 min 97.4% 46 s 97.7% +0.3%
DWE 19 min 97.3% 41 s 97.3% 0.0%
FGE 32 min 55.0% 48 s 64.5% +9.5%
FRE 21 min 33.8% 39 s 86.5% +52.7%
HPE 30 min 84.7% 52 s 94.1% +9.4%
TVE 20 min 57.0% 39 s 90.4% +33.4%
WOE 18 min 99.5% 45 s 99.2% -0.3%

A second experiment was performed to test the accuracy
of µDisagg to predict all 9 loads at the exact current level
for each time period. An accuracy 44.6% was achieved when
all 524,544 data points. If we relax our accuracy measure by
±1A (an approximation) so long as there is not a transition
OFF to ON from a load, or visa versa then we get an accuracy
of 53.0%. Having exact accuracy for current levels may only
be important when there are changes in state (e.g. an load
that is ON turning OFF). This condition is important because
µDisagg might indicated that a load was ON even thought it
was not or µDisagg might determine a load was OFF even
though it was ON – in both cases this would be counted
as an in accurate result. When examining the disaggregation
results the majority of the errors come from FGE (the kitchen
fridge) which cycles frequently enough between OFF and ON
(cooling) where there is no dominant state like with the other
loads selected. If we remove the disaggregation of the fridge
from our tests then the accuracy improves to 79.7%.

After implementing µDisagg on the Arduino Due, we found
it took an average of 3.78ms to disaggregate 9 appliances
on the Ardunio Due (an ARM Cortex-M3 processor). This
allowed us to run µDisagg the Precision Ammeter instead of
our initial design plans that had two Arduino boards (one for
the ammeter and the other for disaggregation) communicating
via I2C. Note that it took about 2 minutes to upload the house



model data (used for disaggregation) to the Arduino Due, but
this only needed to be done once.

B. Further Analysis

It may be counterintuitive to think that we can have better
accuracy with coarser measurement values, but in some cases
this approach can indeed result in improved accuracy, specifi-
cally in cases involving jitter removal. For example, the more
fine-grained dA current readings for FRE (the constantly-on
furnace fan) shows a lot of flux because the fan has a variable
speed motor. As the filter gets clogged with dust over time,
the motor has to work harder to push the same volume of
air (this gets reset when the air filter is changed). When FRE
is measured in dA there can be a spread of high probability
measurements from 1A–1.6A and 1.8A–2.3A all being of the
state fan on. If FRE current is measured in A instead of
dA, then the spread becomes two values (1A–2A) with an
increased probability.

However, using A increments instead of dA increments does
not allow us to identify vampire loads or appliances in standby
mode. For example, the CDE (Clothes Dryer) has a standby
mode of 400mA which is now seen as being 0A. So there
are trade-offs, but those can be good or bad depending on our
disaggregation goals. For instance, if we are only interested
in identifying large deferrable loads for demand response then
identifying vampire loads may not be the priority.

VII. SMART GRID INTERFACE

The c-meter will play a pivotal role in the DR interaction
between utility company and house occupants–not just for
the initial DR request.Load disaggregation also will play a
part in the verification of the accepted DR request [11]. The
utility company needs to verify houses that accept DR requests
actually did turn off the appliances they selected to meet the
request. However, there may be interesting issues that arise
from this. For instance, say occupants accept a DR request
and respond that they will stop using the clothes dryer (which
was consuming 5kW) but unexpectedly the heat pump turns
on and starts to consume 6kW.

Without load disaggregation the utility company might con-
clude that the occupants did not mean the DR request and no
financial incentive would be given. With load disaggregation
the utility company knows what has happened and indeed the
occupants did meet the DR request. If the utility company does
need the occupants to further reduce consumption by shutting
off the heat pump another DR request can be sent.

VIII. CONCLUSIONS

We have presented our prototype Cognitive Power Meter
(c-meter) that uses an open source ammeter which we have
designed along with the Precision Ammeter Array (a-array)
used to build the probabilistic appliance (or load) consumption
models used for disaggregation. Using the hardware platform
we have implemented our real-time embedded load disaggre-
gation algorithm called µDisagg. µDisagg is the first load
disaggregation algorithm to be implemented on an inexpensive

low-power embedded processor that runs in real-time using a
typical/basic smart meter measurement (current, in A).

Although µDisagg is still in the initial stages of develop-
ment, it has high accuracies (most > 90%) when determining
what individual loads are running in the house and good accu-
racy when determining the combination of loads running using
an approximation (about 80%). Our future work includes:
investigating how and if we can simplify building the house
model, and adding the ability to recognize new loads as new
appliances over time.

ACKNOWLEDGMENTS

Thanks to Technical Support at Analog Devices for helping
with the final ammeter design. Special thanks to the BCIT
School of Energy for providing lab space and research seed
funding. Research partly supported by grants from the Na-
tional Sciences and Engineering Research Council (NSERC)
of Canada, and the Graphics, Animation, and New Media
Network of Centres of Excellence (GRAND NCE) of Canada.

SCHEMATICS & SOURCE CODE

All schematics and firmware source code have been
released as open source and can be downloaded from
https://github.com/smakonin/c-meter. Our load disaggregation
algorithm µDisagg has not been released as open source as of
yet, it is currently under active development.

REFERENCES

[1] B. Seal and R. Uluski, “Integrating Smart Distributed Energy Resources
with Distribution Management Systems,” The Electric Power Research
Institute (EPRI), 2012.

[2] S. Makonin, F. Popowich, and B. Gill, “The Cognitive Power Meter:
Looking Beyond the Smart Meter,” in Electrical and Computer Engi-
neering (CCECE), 2013 26th IEEE Canadian Conference on, 2013, pp.
1–5.

[3] F. Sultanem, “Using appliance signatures for monitoring residential loads
at meter panel level,” Power Delivery, IEEE Transactions on, vol. 6,
no. 4, pp. 1380–1385, 1991.

[4] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the
IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[5] M. Zeifman, “Disaggregation of home energy display data using proba-
bilistic approach,” Consumer Electronics, IEEE Transactions on, vol. 58,
no. 1, pp. 23 –31, 2012.

[6] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised
disaggregation of low frequency power measurements,” in 11th Interna-
tional Conference on Data Mining, 2010, pp. 747–758.

[7] J. Kolter, S. Batra, and A. Ng, “Energy disaggregation via discriminative
sparse coding,” in Proc. Neural Information Processing Systems, 2010.

[8] J. Kolter and T. Jaakkola, “Approximate inference in additive factorial
hmms with application to energy disaggregation,” Journal of Machine
Learning Research - Proceedings Track, vol. 22, pp. 1472–1482, 2012.

[9] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Non-intrusive load
monitoring using prior models of general appliance types,” in Twenty-
Sixth Conference on Artificial Intelligence (AAAI-12), 2012.

[10] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring:
Review and outlook,” Consumer Electronics, IEEE Transactions on,
vol. 57, no. 1, pp. 76–84, 2011.

[11] D. Bergman, D. Jin, J. Juen, N. Tanaka, C. Gunter, and A. Wright, “Non-
intrusive load-shed verification,” IEEE Pervasive Computing, vol. 10,
no. 1, pp. 49–57, 2011.

[12] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajic, “AMPds:
A Public Dataset for Load Disaggregation and Eco-Feedback Research,”
in Electrical Power and Energy Conference, The Annual (EPEC), 2013,
pp. 1–6.


