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ABSTRACT This paper proposes an experimental design process for the application of energy disaggre-
gation using multi-target regression, a new data learning approach in this application area. The approach
shows to be a suitable model for dealing with energy disaggregation problems in which the task is to predict
multiple appliances usage from the aggregate data. The experiments were conducted by analyzing AMPds2
and ECO public data sets for verifying the effectiveness of the approach. The data were analyzed through
the machine learning process to select the optimal set of electrical features, learning algorithm, and model
parameter so that the system resulting from the process could deliver the optimal performance for loads
inference. Results of the data learning showed that the electrical features set of current (I ), real power (P),
reactive power (Q), and power factor (PF) for the aggregate data and Random Forest as the base regressor
for multi-target regression model could provide the best disaggregation performance. The overall predictive
performance of disaggregation accuracy and F-score outperformed the benchmarking Super State Hidden
Markov Model (SSHMM) and Denoising Autoencoder (DAE) network approaches.

INDEX TERMS Home energy monitoring, machine learning process, multi-target regression, nonintrusive
load monitoring.

I. INTRODUCTION
Non-Intrusive LoadMonitoring (NILM) is the task of decom-
posing the whole energy information from a building into
the information of energy used by appliances [1]. The details
of energy feedback could provide users with decisive infor-
mation such as the saving motivations [2], load deferral for
high-power appliances. Studies showed that users could save
energy costs up to 12% by having real-time feedback on
appliance-level as against the conventional monthly billing
feedback [3]. Grid utilities could also benefit in energy
demand forecasting and balancing the energy supply pol-
icy [4]. The NILM operation relies on the machine learning
process which consists of data collection, features engineer-
ing, and data learning and identification [5]. The key chal-
lenge of the system development is to design the learning
algorithm to accurately infer the contributed loads operation
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from the aggregate data for the proper action in the energy
management scheme.

The NILM research directions were to develop a new or
modified data learning algorithm for a better load predictive
performance. Those works have been done by using differ-
ent data learning frameworks mostly on Pattern Matching,
Hidden Markov Model-based approach, Multi-Label Clas-
sification, and Deep Neural Network [5], [6]. Multi-output
learning framework is an approach that has drawnmore atten-
tion in many research areas on prediction of multiple output
data [7]. In the NILM applications, the framework is compat-
ible to represent the operating status of multiple appliances
to its multiple-output data format. This work presents the
use of Multi-Target Regression approach, a new data learn-
ing framework for the NILM. The framework could provide
a direct estimation of power demand for the target appli-
ances which is a benefit over the conventional multi-output
classification-based approaches [8], [9]. We also propose the
experimental design process based on the machine learn-
ing discipline to obtain the optimal predictive performance.
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Thus, the key contributions of this work can be summarized
as follows.

(1) We introduced Multi-Target Regression as the data
learning framework and its suitability for energy disaggrega-
tion tasks.

(2) The experimental procedure was proposed to design a
data learning system with optimal performance for appliance
loads inference.

(3)We evaluated the proposed approach on two public data
sets with performance benchmarking to verify the effective-
ness of the approach.

The remainder of this paper is organized as fol-
lows: Section II reviews the development, advantages, dis-
advantages of the major existing approaches, and the
research direction. Section III briefs the key descriptions
of the proposed approach, system design process, and
performance indexes. Section IV presents the experimen-
tal results and discussion, and Section V concludes this
paper.

II. RELATED WORKS
The research in the NILM system development could be
briefly classified into two categories of event-based and non-
event-based approaches. The event-based approaches relied
on detecting power state switching (ON <-> OFF) which
learned the steady-state features of changed power data
(1P, 1Q) [1], [10] or power ‘ON’ transient features for
more accurate loads identification [11], [12]. The need of
high-frequency sampling to detect the transient features made
some limitations; the data storage problem and integration of
the datamodeling to the smart meter which normally operated
at low-frequency sampling [5], [13].

The non-event-based approach referred to the method that
identified the appliances operating status without detect-
ing the switch events. Thus, the capability to handle low-
frequency data was an advantage over the event-based
approach. The well-known approaches were based on the
Factorial Hidden Markov Model (FHMM) [14] which fac-
torized the aggregate as a time series to predict the hidden
power states of appliances. The load power data was inferred
from the predicted state by the models [15], [16]. These
approaches could well fit for modeling appliances with multi-
ple power states but required high computational complexity
through parameters and probabilistic modeling. Other non-
event-based approaches used the conventional classification
algorithms to classify the appliance power state using Neural
Network [17], k-Nearest Neighbor (kNN) [18], Support Vec-
torMachine [19]. The classification approach, however, mod-
eled each appliance label independently which did not reflect
the practical behavior of appliances correlation that could
have existed. Recent NILM developments applied Deep Neu-
ral Network (DNN) as the data learning framework [20].
Some common network architectures were employed, for
example, Convolutional Neural Network [21], Long-Short
Term Memory [22], and Denoising Autoencoder [20]. The
advantages of the framework were the automatic features

extraction and system scalability through transfer learning.
However, the Deep Neural Network required a large number
of training samples to obtain adequate accuracy performance
and training the model involved the configuration of many
parameters and the network structure adjustment.

To ascertain the applicability of low-frequency sampling
data with less computational complexity, this work proposes
Multi-Target Regression (MTR) framework [23], a new data
learning system for the energy disaggregation task. The
approach is a category of multi-output learning [24], [25]
where the model can directly estimate the appliance power
consumption data from the aggregate measurement with the
incorporation of labels correlation in data modeling. Unlike
the multi-label classification [8], [26] or HMM-based learn-
ing framework that relied on classification tasks in which the
primary output was the discrete power state values. It then
needs a further process to convert the power state into the
estimated power data, which might induce deviation or pre-
diction loss. The proposed approach takes advantage of this
issue, in addition, the ability to incorporate multiple features
of the aggregate data could enhance the overall predictive
performance.

III. PROPOSED METHODS
The objective of a NILM system is to decompose the aggre-
gate consumption data into the estimated power consumption
of contributed appliances through the disaggregation algo-
rithm as expressed in (1).

f (P(t) 7−→ p̂i(t)) : P(t) = (p̂1(t)+ p̂2(t)

+ . . .+ p̂m(t))+ ε (t) (1)

where P is the ground-truth aggregate power data which is
the input given to the disaggregation model (f ). The model is
then used to predict and generate the output p̂i as the estimated
power data of appliances i from the total m appliances at
time t.The error term (ε) is the loss inAC line ormeasurement
error. The task of predicting multiple appliance labels in
which each label gives the estimated power consumption can
then basically be represented as a problem of multi-output or
multi-target regression [7], [23].

A. MULTI-TARGET REGRESSION
Multi-target regression is a type of supervised learning frame-
work where the goal is to estimate the numeric value of
the target variable from the observation data. It has been
successfully utilized in many applications, for example, pre-
dicting gas levels in multiple tanks of a gas converter sys-
tem [27], ecological modeling for a prediction of multiple
variables that describe the quality of plantations [28], and
estimation of biophysics parameters from multiple sensing
images [29].

For the application of NILM, a data set D of N instances
consists of the observationX1, . . . ,Xk for k electrical features
of the aggregate data and the ground-truth power data for
m contributing appliances Y1, . . . ,Ym. Since the observation
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TABLE 1. Characteristics of some common-used methods for multi-target
regression.

and power data for each instance can be characterized as
a vector of input and output, the data set can be expressed
in (2) as a term of the input-output pair.

D = {(x1, y1), . . . , (xN , yN )} (2)

where xj is the input vector of k features by the aggregate data
for jth instance (x j1, . . . , x

j
k )

yj is the output vector of appliances power data of
m appliances for jth instance (yj1, . . . , y

j
m)

The multi-target regression model learns data by mapping
the vector of aggregate data (x) to the vector of appliance
power data (y) through a disaggregation function (f : x 7−→ y)
or a multi-target regression algorithm. The model is then used
for simultaneously predicting the appliance power consump-
tion data ({ŷT+1, . . . , ŷT ′}) from new aggregate instances
({xT+1, . . . , xT ′}) where T ′ represents the period of new
samples.

The data learning method for multi-target regression can
be classified into 2 categories of Problem Transformation
and AlgorithmAdaptation approach. The first category trans-
forms the multi-output regression problem (y data) into one
or more sets of single-output problems using a multi-output
regressor then applies an off-the-shelf regression algorithm
or based regressor to build the regression models. The sec-
ond category adapts a single-target regression algorithm to
handle the multi-target data directly [23]. If the label correla-
tion within the appliances exists, the Algorithm Adaptation
approach could capture the dependency and provide better
regression performance compare to the method from the
Problem Transformation approach [30].

The characteristics of common-used multi-target regres-
sion methods for each approach can be summarized
in Table 1.

FIGURE 1. The experimental design process for the proposed approach.

B. DESIGN PROCESS
The design process in this work utilizes the key procedure
in machine learning design to optimize the performance of
appliance loads prediction. The process includes (1) Data
processing: To clean up, aggregate, and build a multi-target
regression (MTR) data set. (2) Features selection: To choose
the best combination of relevant electrical features that could
deliver the best data estimation performance. (3) Algorithm
selection: To choose the best multi-target regressor from
common-used regression algorithms by comparing the pre-
dictive performance. (4) Model selection: To optimize the
regression model through model parameter tuning. The pro-
cess is then finalized by the performance comparison of the
proposed approach to the existing ones. The experimental
design process is summarized in Fig. 1.

C. DATA AND MULTI-TARGET DATA SET
The data sets publicly available for the NILM research have
different characteristics in sampling frequency, electrical fea-
tures to be monitored, and set of appliances. This work eval-
uated the AMPds2 data [33] and ECO data [34] since they
both have a couple of electrical features for the mains meter
(aggregate data) which were useful in the process of features
selection and loads power data (P) were equipped for all
sub-meters. For AMPds2, it is a collection of 20 load labels
measurement with important electrical features, for example,
current, power (active, reactive, apparent), and power factor
from a house in Canada with a period of 2 years and 1-minute
data sampling interval. The data set contains some appliance
labels with a single appliance per label, for example, Clothes
Washer, Heat Pump,Wall Oven. Other labels containmultiple
appliances within a label, for example, Basement Room,
Home Office, Entertainment Plug.

For ECO data, it is a collection of some appliance loads
measurement from 6 houses in Switzerland for 8 months.
The measurement consists of current, voltage, and their phase
shift from three phases of the mains with 1 second of data
sampling frequency. After cleaning and concatenating the
aggregate data (x) to the set of output targets (y), i.e., the
power consumption of each appliance label, a sample illustra-
tion of the multi-target data set is shown in Fig. 2. The data set
has m appliance labels and N instances with the observation
of I, P, Q, and PF features for the aggregate data.

D. EVALUATION TOOLS AND PERFORMANCE INDEX
This work adopted sklearn.multioutput, a method for learning
and evaluating multiple-output problems, from Python 3.7
with scikit-learn package (ver. 0.24.2) [35]. Data learning
methods available for multi-target regression problems are
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FIGURE 2. A sample illustration of multi-target regression data set.

from the problem transformation approach, consisting of
MultiOutputRegressor for Single Target (ST) and Regres-
sorChain for Regressor Chain (RC). Both methods are
meta-estimators that require a base regressor in the model
construction to extend single-output regressors to multi-
output regressors. For the algorithm adaptation approach,
we used the methods of multi-target regression tree and rule
induction from CLUS [32]. It was a Java-based data learning
API for learning the predictive clustering trees which were
extensible for multi-task problems.

The performance evaluation of the regression algorithm is
to measure how close the estimated values are as compared
to the true value. There are 2 common performance indexes
for energy disaggregation tasks as follows.

1) Disaggregation accuracy: This index defines the accu-
racy of power prediction by the one-complement of the dif-
ference between the predicted power to the true power over
a given period [36]. We consider this index instead of Root
Mean Square Error (RMSE) or Mean Square Error (MAE)
since it provides the relative value rather than the absolute
ones, so the error of load labels with different power con-
sumption levels can be scaled and made a comparison. The
overall disaggregation accuracy can be expressed as (3).

Disaggregation accuracy = 1−

∑T
t=1

∑n
i=1

∣∣ŷit − yit
∣∣)

2∗
∑T

t=1
∑n

i=1 y
i
t

(3)

where ŷit and yit are the predicted and true power data for
ith appliance label within a period of T instances. For indi-
vidual label accuracy, the equation can also be applied by just
omitting the summation of n appliances calculation.
2) F-score: A performance measure for calculating the

harmonic mean of precision (P) and recall (R). The F-score
was evaluated by macro-average whereby, for a binary identi-
fication of power ‘On’ and ‘Off’ classes, the index calculates
P and R for each class and does average as (4).

F − score =
1
k

∑k

c=1

2× PC × RC
PC + RC

(4)

where Pc and Rc are the precision and recall for each class of
data, k is the number of appliance labels.

Since the primary output of the regression algorithm is the
estimated power data for each appliance label, we need to

translate this data into the power state in binary form {0,1} to
indicate if the appliance is being turned OFF or ON. A basic
strategy is to use a threshold value to determine the power
state from the ground-truth power data, then apply the same
value to the estimated power data. The F-score value is then
evaluated based on the true and predicted power states to
obtain the precision and recall values as equation (4). The
identification of the power state (pjk ) can be defined by (5).
For jth data instance and k th appliance label,

pjk =

{
1, if Pjk ≥ PTh(k)
0, if Pjk < PTh(k)

(5)

where PTh(k) is the threshold power data of appliance
label k. It is derived from the current consumption data
that corresponds to the power value, which differentiates the
appliance operating state of ‘OFF’(‘0’) or ‘ON’(‘1’).

The F-score value is normally correlated to the disaggrega-
tion accuracy value since both indexes are generated by the
estimated power data. In addition, a deviation of the selected
threshold power might slightly affect the F-score due to some
changes in the power status data (‘0’/‘1’) that could alter the
F-score value.

IV. RESULTS AND DISCUSSION
This section described the experimental procedures and
results which first started with the AMPds2 data set evalu-
ation. We split the data for 3 months (129,600 samples) to
evaluate the optimal components in data learning. The evalu-
ationwas conducted using 10-fold cross-validation (K = 10),
the performance value thus composes of the mean score with
its standard deviation values. Each procedure was

presented in the following topics.

A. FEATURE SELECTION
The multi-target data set was created by using a set of elec-
trical features that could indicate the presence of appliance
operation, which were current (I ), active power (P), reac-
tive power (Q), and power factor (PF). The Single-Target
method with Random Forest Regressor as the multi-output
regressor and the based regressor respectively were used for
the test purpose. To evaluate the performance by each set
of features, the disaggregation accuracy was examined by
using the forward selection technique based on the paired
t-test [37]. It determined a candidate set of features that would
be statistically significant of difference from the others. The
result presented in Table 2 showed that the combination of
all 4 electrical features could deliver the best disaggregation
performance, the bold figure indicates the best value. On the
other hand, this result shows an advantage of the multi-output
learning framework, where more relevant features can be
incorporated for higher predictive performance. Thus, these
features set will be used for the next experiments.

B. LEARNING ALGORITHM SELECTION
This experiment aimed to choose the best regression algo-
rithm for loads power estimation. A set of common single
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TABLE 2. Disaggregation accuracy by different sets of features.

TABLE 3. Disaggregation accuracy by different multi-target regression
algorithms.

output regressors was used as the based regressor for the
Problem Transformation approach. The candidate algorithms
were ranged from the linear model of Ridge Regression, the
non-linear model of Support Vector Machine, and ensem-
ble algorithms of Random Forest Regressor and Gradient
Boosting Regressor for both Single-Target and Regressor
Chain methods. For the Algorithm Adaptation approach,
two algorithms based on Regression Tree were deployed.
Table 3 showed that the Single-Target method using Random
Forest as the based regressor could provide the best disag-
gregation accuracy. Random Forest is an ensemble learning
which proved to provide good performance by previous
research [38], [39]. Although the regressor ignores label
dependency, it could provide good performance. This could
be described as the data set was containing 20 appliance labels
which were a relatively high number. Thus, determining or
revealing the correlation among appliances could be tough
by the model. However, this behavior can be different for data
sets with different characteristics such as the appliance power
profiles or set of electrical features under measurement.

C. MODEL SELECTION
This experiment aims to tune up the model performance
through a given range of model parameters using the

TABLE 4. Disaggregation accuracy after tuning up the model parameters.

TABLE 5. Execution time for data training and testing.

Grid Search method in scikit-learn. The number of trees
(n_estimator) and the maximum depth of tree branches
(max_depth) were applied for the tuning process. These
2 parameters affect the way that the model creates decision
trees for the Random Forest Regressor. Table 4 shows that
the performance can be increased through a new set of model
parameters.

D. EXECUTION TIME
Using the prior system configuration for data learning,
this experiment aims to evaluate the execution time for
data training and data testing. The 3-month samples
(129,600 instances) were split 80% and 20% for training and
testing, respectively. We used the Python method time.time()
to check the starting and stopping time then evaluated the
period for the training and testing process. This experiment
was run on a 64-bit Windows 10 PC with an AMD RYZEN 5
(2.1 GHz processor) and an 8 GB memory. All evaluations
were executed using a single thread setting. The figures of
data training time and testing time presented in Table 5 were
the mean and standard deviation values from 10 runs for
fitting the model and predicting the test data.

E. TRUE AND PREDICTED POWER DATA
This experiment illustrates the plots of ground-truth (true)
power against the predicted power data by some appliance
labels. This is to visualize how well the predictions could
track the true values in time series data as shown in Fig. 3. The
data estimation could perform relatively well for high-power
appliances (Clothes Dryer and Heat Pump) where the false
positives had a low proportion. The low-power appliances, for
example, the Kitchen Fridge had more proportion of falses in
data estimation.

In a scenario where two or more appliances were turned
ON or activated simultaneously, the true and predicted power
together with the associated aggregate data for some of these

VOLUME 9, 2021 163037



B. Buddhahai, S. Makonin: Nonintrusive Load Monitoring Based on Multi-Target Regression Approach

FIGURE 3. True and predicted power plots of individual appliances operation for AMPds2 data set.

FIGURE 4. True and predicted power of appliances with simultaneous
power ON activations for AMPds2 data set.

events were illustrated in Fig. 4 (a) and (b). Apart from the
power estimation of an appliance at any given samples, this

result showed the capability of the proposed approach on
disaggregating multiple appliances from the aggregate data
at any specific time instance.

F. LABEL ACCURACY AND PERFORMANCE COMPARISON
FOR AMPds2 DATA SET
This experiment evaluated the predictive performance for
some appliance labels and the overall for the entire set
of labels by the train/test split of 0.8/0.2. The benchmark-
ing approaches were Super-State Hidden Markov Model
(SSHMM) [2], [40] and Denoising Autoencoder (DAE) net-
work [18]. The SSHMMwas a variant of HMM-based which
defined the power states from the combination of individual
appliances status and the approach claimed to outperform
some other HMM-based variants. The DAE approach used
the network architecture presented in [18] which was shown
to outperform the other network topologies. The imple-
mentation used the neural-disaggregator which was refer-
enced from [41] and executed using Keras/Tensorflow and
NILMTK [42]. The Denoising Autoencoder network aimed
to reconstruct the clean power data of the target appliance
from the aggregate measurement. The aggregate data was
considered to be noisy because it also consists of data that
was generated by other appliances.

We extended the range of AMPds2 data to 1 year (first year
of the entire 2-year range) and the denoised data version was
used. This was the data where the unmetered power data was
subtracted from the actual aggregate measurement and it was
for a fair comparative experiment. The evaluation results for
disaggregation accuracy and F-score showed in Table 6 and
Table 7, respectively.

Table 6 and Table 7 showed that this work outperformed
the other two approaches by the overall and most of the
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FIGURE 5. True and predicted power plots of individual appliances operation for ECO data set.

TABLE 6. Labels disaggregation accuracy and performance comparison
for AMPds2 data set.

individual labels. The SHMM provided good performance to
appliances of Kitchen Fridge and HVAC/Furnace. Whereas,
the DAE performed well on high-power appliances with a
large number of power activations like the Clothes Dryer and
Heat Pump. Since the DAE network learned sets of sequential
data when the appliance power was activated rather than
learned by sample-based as the proposed approach. Thus, for
the same amount of training samples by this experiment, the

TABLE 7. Labels F-score and performance comparison for AMPds2
data set.

proposed MTR approach could provide better performance
than that of the DAE network. Typically, to obtain a good
performance by this network type, the training requires a
large number of samples and empirical adjustment on the
network parameters [18].

Overall, the performance values of disaggregation accu-
racy and F-score of high-power appliances (Clothes Dryer,
HVAC/Furnace, and Heat Pump) were higher than that of
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TABLE 8. Labels disaggregation accuracy and performance comparison
for ECO data set.

the lower power appliances (Kitchen Fridge, ClothesWasher)
and the combination of appliances in a label (Basement,
Home Office) which aligned to the results of previous
studies [1], [13].

G. PERFORMANCE EVALUATION OF ECO DATA SET
Data set from House 2 was selected for evaluation since the
proportion of unmetered power data was the lowest value
among the six houses which was a benefit for data training
and model performance. The data set was a noisy version
(unmetered data was not excluded) and was resampled to
a 1-minute interval and split for the train/test to 0.8/0.2. The
same multi-target regression algorithm and model configura-
tion were adopted for data learning. Some visualizations of
the predictions and ground truth data for individual appliance
operations and simultaneous power activations were shown
in Fig. 5 and Fig. 6, respectively. Interestingly, the Lamp
with low-power data could be disaggregated from the much
more high-power data of the Dishwasher. In addition, the
model could perform well for disaggregating the low-power
appliances of Lamp and TV.

Table 8 and Table 9 presented the predictive performance
values which showed to be comparable to the SSHMM and
DAE approaches for some appliance labels, but they outper-
formed for the overall performance values. The performance
values for Fridge and Freezer were quite high by the three
approaches since these appliances had a continuous operation
which could be the advantage for generating a sufficient
number of training samples. The Kettle and Audio got lower
performance than the other labels. For the Kettle, even if it
was a high-power appliance but it was rarely activated in
which its energy consumption contributed to 3.99% of the
whole house [34]. Thus, the rare positive training samples
could hardly create a model with high predictive perfor-
mance. For Audio, this was the low-power appliance with
normally contributed small changes to the aggregate data,
thus making the model difficult to extract its presence.

TABLE 9. Labels F-score and performance comparison for ECO data set.

FIGURE 6. True and predicted power of appliances with simultaneous
power ON activations for ECO data set.

According to the proposed Multi-Target Regression
approach, we can summarize the key advantages against its
peers as (1) The capability to incorporate several relevant
features in the data training process. It could help the model
learns data better, unlike the HMM-based or DAE approach
that used just the power data (P) feature for model training.
The direct data regression with lower data processing could
also help reduce loss from estimation. (2) The approach is
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more computationally efficient and requires fewer model
configurations, just for the multi-output regressor and the
base regressor model parameters. Some limitations of the
approach, however, are that (1) It requires the full labeled
data in training when there is a change in the set of target
appliances, which is a property of the supervised learning.
To ease the issue of intensive training, the semi-supervised
concept which uses partially labeled data together with the
unlabeled data in the training process [43] can be employed.
Another issue is (2) the limited performance for the multi-
power state appliances (like clothes washers or dishwashers).
The multi-state operation can generate multiple levels of
power data which makes the regression model harder to accu-
rately estimate the power demand. Increasing more training
samples that are associated with the relevant power level can
help improve the predictive performance.

V. CONCLUSION
Themulti-target regression approach shows the suitable capa-
bilities for NILM application in which it can perform data
learning tasks for estimating the power data of multiple appli-
ance labels. The experimental results illustrate the evaluation
procedure to obtain the optimal learning component for the
best performance of loads disaggregation. Using the electri-
cal features set of I-P-Q-PF and the multi-target regression
model with the Random Forest as the base regressor, the pre-
dictive performance when evaluated AMPds2 data set could
reach 92.2% and 91.9% for the overall disaggregation accu-
racy and F-score value, respectively. For the ECO data set, the
overall disaggregation accuracy and F-score value reached
85.5% and 83.3%, respectively. The results outperformed the
benchmarking approaches of the SSHMM and DAE network
by the overall and most individual appliance labels.

The system design procedure can be applied for individual
home energy monitoring. The proposed experimental process
would be split into 2 phases. The first phase is the data
acquisition and training data which is to do the data collection
and perform data learning as the designated procedure. The
second phase is applying the model for new or unknown
aggregate data to obtain the power estimation and infer the
status of appliances. The outperformance of loads identifica-
tion by the proposed approach to the other benchmarks makes
the application a more efficient system for home energy
management.
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