BCIT Bachelor of Technology in Computer Systems

Major Project
Final Report

COMP 8045 & 8046 (18 Credits)

Submitted as part of the requirements for graduation on December 15, 2008

%
..

MAP.\VITH
Copyright © 2008 Stephen Makonin. WHEELS

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Table of Contents

INEFOTUCTION ..ttt ettt ettt b et s e e et e e bt e bt e st e s et e e st ebeeaeeaeea s e st eb e st eh e eaeeasea b e ea e eh e ea e ea b ea s e e e b e eaeeh e eaeesbeabeneeeb e e bt eh e ea s et et enaeebeeanenaenens
Background Summaries
Student Background Summary ..
Educational Background....
Professional Background ...
Computer Systems Specialization
BCIT GAIT Lab Background Summary.........
Project Management Background Summary
Alternate Solutions.........ccccceveriiernens
Website Topology ...
Visual Map Editingccceveuernenns
Social Network & Discussion Groups
Mobile Device Access.
Chosen Solutions..........
Website Topology ...
Visual Map Editing
Social Network & Discussion Groups
Mobile Device Access....
Development Details..........
Development Methodology..........
Analysis & Feature Requirements.
The Mapping System
The Social Network..
Mobile Access
Design & System Architecture
System Overview
Visual Layout & Layers
System Layout & Structure
Database Design
Class Diagrams
Software Quality Assurance
Source Code Control
Bug Tracking
Unit Testing
Code Walkthrough
User Acceptance Testing
Configuration Management
Development Workstations
Development Web Server
Cell Phones
Implications of Implementation
The Performance of Java
Server Environments
Reliance on Facebook and Google Maps
Hibernate ORM
Turn-By-Turn Directions....

Conclusions
Appendix A: Various Screen Shots
Appendix B: Letter from Project Sponsor

Copyright © 2008 Stephen Makonin.

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Introduction

This project was an attempt to create and study an online social network that had a common interest.
More specifically we wanted to take a segment of the BCIT community, both employees and students,
and provide to them a way to share bike routes they use to travel back and forth to BCIT.

The project is called Map with Wheels (MWW) which was developed in the BCIT GAIT Lab. It was a TEK
funded grassroots project initiative to encourage staff and students to cycle to work and to share their
bike routes with others. This project enables sharing through user/community participation. Users can
access routes contributed by fellow cyclists in real time via any computer or mobile device (e.g. cell
phone).

Map with Wheels utilizes the Facebook social networking software and uses Google Maps to add, edit,
and display bike routes and Points of Interest (POI). POls, such as hazards, controlled intersections, cut-
throughs, and other user defined points help describe various situations that may be encountered while
taking a particular bike route. Discussion groups further foster communication amongst users as to
their experiences while taking a particular bike route. Each route can then be rated in terms of:
directness, flatness, control, and traffic volume.

Map with Wheels allowed me to expand my knowledge of Java, Web 2.0, and mobile phone application
development. Map with Wheels also will allow me to explore providing solutions using high-level
communication methodologies such AJAX and RESTful web services. Exploring Mashups that deals with
collaborative computing and social networking (communication at a human level) is also an interest of

mine.

There is an online video demonstrating MWW at: http://server20.ielbcit.ca:81/mww-demo/.

Copyright © 2008 Stephen Makonin. pg. 3

http://server20.ielbcit.ca:81/mww-demo/

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Background Summaries

Student Background Summary

Educational Background

Stephen Makonin holds a Diploma in Computer Information Systems (1996) from Selkirk College and is
in the process of studying for his Bachelor of Technology at BCIT (expecting to graduate in 2010). He
along with four other authors wrote the Visual C++ 5 Developer's Guide which Sams Publishing
published in 1997.

Professional Background

For the last 12 years, Stephen successfully ran a software development company providing full SDLC
services before joining BCIT, in January 2008. In 2007 he, along with another business associate,
launched Vvvroom.com an online news reader and news aggregator which employs a rich user
experience built on Web 2.0. His industry knowledge includes: government, healthcare, manufacturing,
online services, social networks, and telecom (paging, cellular, wireless). Some of his past business
clients include: engcen.com, Fraser Health, Quartech Systems, Sierra Wireless, Telus Mobility, and
Vancouver Coastal Health.

Although Stephen’s preferred programming languages are C and Python, he has used many others to
create and deliver software solutions in: billing/rating, data analysis/conversion, socket programming,
web applications, as well as Internet social networking. He has extensive experience using XML
(including web services, AJAX, RSS, and ATOM) and implementing Internet RFCs (HTTP, SMTP, POP,
NNTP, SNMP, UFTP).

Computer Systems Specialization
Stephen has chosen to specialize in one option which is Data Communications. This specialization allows
him to explore his interests in high-level and low-level data communications programming. He believes
that data communications is one of the key fundamental and foundational building blocks for
technology: past, present, and future.

Copyright © 2008 Stephen Makonin. pg. 4

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

BCIT GAIT Lab Background Summary

The BCIT GAIT (Group for Advance Information Technology) Lab has a long history at BCIT. It began as
the ARCS (Applied Research in Computer Systems) Lab, a CST student research lab, around 1984 headed
up by Mike Scrabin. In 1986, headed by Fred Martin, it had structurally developed into what is GAIT
today, a research lab that preformed applied research for industry clients. In 1990, the ARCS Lab was
renamed to GAIT. GAIT is now headed up by Dr. Hassan Farhangi an Electrical Engineer and the driving
force for BCIT research in Smart Micro-Grids.

Through the years, GAIT has focused on Al research then refocused on Internet/network security. At
present GAIT has three main research themes: Intelligent Power Grid, Mobile/Wireless Application
Development and Web Performance Analysis. Map with Wheels falls under the Mobile/Wireless
Application Development theme.

More information about GAIT can be found at: http://www.bcit.ca/appliedresearch/gait/.

Project Management Background Summary

Project Management for MWW was performed by Dr. Ari Goelman (TPEG Project Leader) and Clay
Howey (GAIT Research Head). MWW was the brainchild of Dr. Ari Goelman, the Primary Investigator for
the Social Sciences research that was done. Clay Howey (GAIT Research Head) was Stephen Makonin’s
project supervisor. Both, Dr. Ari Goelman and Clay Howey, have approved this project for use as my
BTech Major Project. Clay Howey has agreed to be the Project Sponsor and his letter is attached under
Appendix B.

Copyright © 2008 Stephen Makonin. pg. 5

http://www.bcit.ca/appliedresearch/gait/

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Alternate Solutions

Website Topology
1 Server
Rendered |7 | Side
HTML | Scripts

HTTP Request & Response

Web Server &
Rendering Engine

In traditional web development a page contained server-side code that would render and modify HTML
before sending it to the client browser. If a user wanted to view a different webpage or submit a form,
the request was made and the server then processes the information and returned a new webpage. This
can involve a lot for page refreshing limiting a “good” user experience.

Visual Map Editing

To create a map editing experience is to access and process raw GIS data for companies like Navteq and
then create a JavaScript system to display the map data on a webpage. Doing this would require GIS
expertise and a significant amount of time to develop the display map system.

Social Network & Discussion Groups
One way to tackle this is to create or use 3™ party discussion group software. Modification would need
to be done to allow for more of a social user experience and users would have to learn a new systems.

Mobile Device Access

Create a Simbian application that would interface with GPS devices and then use a micro-browser to
display the requested information. This would require that a cell phone user have a micro-browser
application on their cell phone and a data plan.

Copyright © 2008 Stephen Makonin. pg. 6

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Chosen Solutions

Website Topology

S

HTML
CSS
JavaScript
] - 'S
s HTTP Reguest & Response
-4

Ajax Request & Response

Web Server w/
Web Service

Client

AJAX was used to communicate between the client browser and the server to eliminate page refreshing.
JavaScript on the client-side will call RESTful web service URLs which then returns data formatted as
JSON results. JavaScript then manipulated the HTML and Google Maps to present the user requests.

Visual Map Editing
Google Maps was chosen to be used for displaying map data. By choosing Google Maps development
time was cut down and we were able to provide these more advanced mapping features:

e Moving existing markers on the map and redrawing the route to reflect that.
e Dragging existing markers to new positions on the map.

e Slicing a line into two lines and at the clicked point a new marker is inserted.
e Deleting a marker deletion and redrawing the route to reflect that.

e The opacity of a route segment increases due to its popularity.

Social Network & Discussion Groups
Facebook was chosen to solve the social network and discussion groups issue. Most faculty, staff and
students have a Facebook account. Choosing to use Facebook also cut down on the development time.

Mobile Device Access

A J2ME application was created instead of a Simbian application. Because J2ME was chosen, the
application would be able to run on more cell phones. Bi-directional SMS was used to deliver data to the
cell phone. SMS is available on all phones and using the Mobile MUSE Platform to send and receive SMS
messages were factors in our decision. Not all cell phone users have a micro-browser application on
their cell phones along with a data plan.

Copyright © 2008 Stephen Makonin. pg. 7

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Development Details

Development Methodology

Development methodology used was “Design by Prototype”. This methodology allows for a greater
degree for end-user interaction and immediate feedback as the project progressed toward completion
through each micro-iteration. Micro-iterations are the delivery of one or two useable features in the
application that a user can try and test.

Add Feature

Tweak Feature User Review

User Feedback

As the project is being built the users get to see immediate progress and provide immediate feedback.
This methodology is particularly useful for Applied Research when there is no clear vision as to how an
end product may look. It also provides for a set of more flexible and dynamic feature set that is
customer driven.

Unlike other prototyping development methodologies, an overall plan exists with a preliminary set of
features. The overall design and framework are created as a first step. Once this foundation is laid out
then features are added and the customer becomes more involved with feedback. The trick, with this
methodology, is to create an open architecture that can handle changes to requirements as the project
progresses. This methodology would not be recommended for developers with little experience in
designing software—senior developers must have that ability to visualize the overall system as well as
using the intuition that was developed from participating on many different software projects.

Copyright © 2008 Stephen Makonin. pg. 8

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Analysis & Feature Requirements
MWW is comprised of 3 sub-systems: the mapping system, the social network, and mobile access. Scope
and related details to each component are listed below:

The Mapping System

Scope

Bike routes will be centric to, and focused on, the BCIT community. It is assumed that the endpoint for a
bike route will always be BCIT, Burnaby campus. Users will be able to rate their own routes to help other
users find routes that may be more suited for them. Google Maps API will be used to render and display
map information and data.

Feature Requirements
The following is a list of specific features sets needed for the mapping system:

Routes and POl must be added, edited, and displayed graphically.

Routes and POl must also have a name and description.

POI must provide the option of uploading a picture for display

Routes must be able to be rated by: directness, flatness, control, and traffic volume.
Routes must have the option of being visually (colour) displayed relative to a chosen rating.
The more popular a section of a route is the darker the route line will get.

MWW must have the ability to prompt users to fill out a survey.

The mapping interface should be simple and intuitive to use.

WK N R WDNPR

The map must be user interactive. The user must have the ability to zooming in/out and scroll

the map to different places.

10. The map must clearly highlight POIs with intuitive icons.

11. If the mouse hovers over a bike route start marker or POI an information tag is displayed (e.g.
“The Brentwood Route by Stephen Makonin”).

12. Information windows must have links to allow for editing and viewing discussion forms.

13. Users must be able to delete their own bike routes and POI.

Copyright © 2008 Stephen Makonin. pg. 9

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

The Social Network

Scope

MWW must foster a community that can use the system to better their experience biking to BCIT. The
information they provide will in turn benefit other users. With the success of Facebook, MWW will
integrate into it using Facebook’s API. The will allow MWW to take advantage of an existing vibrant
online social community. Facebook discussion groups will be added to allow users to comment in
general or on a specific bike route or POI.

Feature Requirements
The following is a list of specific features sets needed for the social network:

Facebook users can search for, add and remove the Facebook App from their account.
The main application will be on a Facebook Canvas Page, there must be profile-viewable part
allowing other users see and access MWW.

3. If a user attempts to view MWW he/she must prompted to login if he/she is not.

4. MWW must prompt the user to add the application; if they have not added it yet to their
Facebook account.

5. Users can add comments to any discussion group.

6. Users will be able to delete or edit comments once posted.

7. Comments will only support plain text formatting which eliminates complexity and potential
rendering issues.

Mobile Access

Scope

Users who have a mobile device that has GPS built to them or is attached to a Bluetooth GPS device can
use a downloadable Java mobile application to query MWW. The mobile application will send MWW the
GPS coordinates of the user. MWW will then send an SMS that gives directions for the nearest bike
route. Only bike routes that end at BCIT will have their directions sent to a requesting mobile phone. The
mobile application will be created with the lowest common denominator mobile device in mind. This
means that only plain text SMS will be used for communications.

Feature Requirements
The following is a list of specific features sets needed for mobile access:

1. The mobile application must be able to read and send, via SMS, the user’s current coordinates. If
the user in not in the Greater Vancouver area an error is displayed.

2. Once MWW receives the user coordinates, an SMS message will be sent back containing turn-
by-turn directions of the nearest bike route to BCIT.

Copyright © 2008 Stephen Makonin. pg- 10

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Design & System Architecture

System Overview

Users on a computer use MWW through Facebook while users using a cell phone can use a custom Java
application to query to the MWW system for nearest bike route. The following is a high-level overview
of how the user will connect/communicate with the MWW system:

User at home
Using a PC

Useron a
Cell Phone

facebook

MWW Server
Located at GAIT’s IEL

Copyright © 2008 Stephen Makonin. pg. 11

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Visual Layout & Layers

MWW contains a number of visual layers that work in conjunction with each other to provide a rich user
experience. Overall layout, in terms of application visual size and webpage position is controlled by
Facebook (a.k.a. the Canvas Page). However, within the Canvas Page, MWW has control of all visual and
interactive aspects; including such things a layout and page refreshing.

= MWW will run within Facebook as an application.
8 Doing so will limit the amount of screen real-estate

== that can be used. To the right shows the parts of
ﬂ the webpage that are in Facebook’s control.
T Facebook is considered to be the top of all the
visual layers and is the container for all other
layers.

The MWW Glue, the code that controls Google
Maps and some of the Facebook integration resides
in the middle. To the right shows the parts of the
webpage that is the MWW Glue. To limit page
refreshes for a better user experience; the MWW

— Glue uses a combination of JavaScript, Ajax, and
Web Services. The result is a look and feel similar to
a desktop application.

3@ , ” 7 ' Google Maps is the inner most layer and resides in
; 544 the inner most box of the MWW Glue. To the right
is a sample Google Map.

Copyright © 2008 Stephen Makonin. pg- 12

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

System Layout & Structure

MWW is considered a multi-layer, or n-tier, application. There is a clear delineation between all layers;
physically, technically, and operationally. The Presentation Layer resides within the web browser and is
developed using common web scripting languages; mainly HTML, CSS, and JavaScript. The Logic or Rules
Layer resides on a web server and is a number of packaged Java classes used to enforce business rules
and is a transactional gateway between the Presentation Layer and the Model/Data Layer. The Model or
Data Layer resides on a database server (MySQL) and is in fact a database with a number of tables.

Facebook Canvas Page (HTML & FBML)

MWW Glue (JavaScript & Ajax) Google Maps

Presentation Layer

_ THE INTERNET (OUTSIDE)

RESTful Web Services (Java)

RESTful Web . Facebook /Hibernate
Core Classes . Util Classes
Services Classes API Classes

e THEWTRANET (NSIDE)

mySQL Database

admin markers routes trip users xref tables

Logic/Rules Layer

Model/Data Layer

Copyright © 2008 Stephen Makonin. pg. 13

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Database Design

" | markers v
marker_id INT{10)

& lakitude DOLBLE

< longitude DOLUBLE

& user_jd BIGINT(Z0)

< revlatt DOUELE

£ revlongt DOUBLE

G stnumber INT{10)

4 staddress VARCHAR(100)

@ distance DOUBLE

% nearroaddistance DOUBLE

& niearroad YARCHAR(10D)

4 inkskrestl WARCHARL100)

& inkstreetZ YARCHARL 100}

“intlatt DOUBLE

£ intongt DOUBLE

% intdistance DOUBLE
Zrmajintstrestl VARCHAR100)

& majintstreet? YARCHAR10D)
< majintlatt DOUBLE

£ majintlongt DOUBLE

4 majintdistance DOUBLE

" | poi_markers ¥
poi_id TNT{ 107 ‘
marker_id INT{10} !

" | routes_markers ¥
‘ route_id INT{10
L

1 marker_id INT{10%
| order INT(10)

& order INT{10) |
[]

"] admin v o
admin_id INT{10) -+
& geocodercredits INT{10)
< kimestarmp DATETIME
>
" | users v
user_jd INT(10)
& Firstname YARCHAR(SO)
& lastname WARCHAR(SO)
¢ email VARCHAR(SO)
& FacebookUserId BIGINT{20)
& mobilenurm YARCHAR{SO)
& lastlogin DATETIME
& created DATETIME
& isadrin TINYINTIL)
& surveydone TIMYINT(L)
- >
_| routes v
route_jid INT{10)
& created_by_id INT{10)
~| points_of_interest ¥ < name YARCHARI100)
poi_id INT(10% ¢ description YARCHAR{SO0)
£ name YARCHAR(SO) & flatness TMT(10)
4+ description MARCHAR(SO0) & directness INT(107)
" ¢ created_by_id INT{10) & traffic INT(10)
& bvpe YARCHAR(G) & conkrolled INTEL10)
4 picture WARCHAR[ZES) & is_boit TIMNYIMTIL)
» >

MWW uses a normalized relational table design to store user and system data. The following describes

the above tables:

admin:

users:

routes:
points_of_interest:
markers:

stores the counting info for geocoder.ca

descriptive info on each user subscribed to MWW

descriptive info on each bike route (routes_markers stores M:N relationship)
descriptive info on each POI (poi_markers stores M:N relationship)

stores each marker that is used to render a POI or bike route

Copyright © 2008 Stephen Makonin. pg. 14

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Class Diagrams

Core Classes

Elmarker

ElTurnByTurn

[ElPointofinterest

Atributes
packags Long id

package Long userd

package String facebookUserld
package double longitude

package doubls latitude

private Set routes

private double geaThreshold = 0.02
private double reviatt

private double reviongt

private int sthumber

private String staddress

private double distance

private double nearroaddistance
private String nearroad

private int remainingCredits

private String intstreet1

private String intstraet2

private double intlatt

private double intlangt

private double intdistance

private String majintstreet!

private String majintstrest2

private double majintlatt

private double majintiongt

private double majintdistance

private double beitSwLatt = 49.2418
private double beitSwlongt = -123.004
private double beitheLatt = 49.2549
private double beitNsLangt = -122.994

Atributes

package boolean shonDsbuglnfo = false

Atributes

private long serialVersionUID = 8409276275203070741L

Operations.

public boolean isShowDebuginfo()
public void setShowDebuglnfo(boolean showDebuglnfa)
public String getDirections(long routeID)

public String getDirections(double latt, doubls longt)
public String getDirections(LatLng |)

public String getDirections(Marker startPaint)

private String directionsToString(Marker closestharker, Marker markers(0..*])

private String getTun(String prevDir, String nextDir)
private int_ dirTaNum String dir)
private double[0..*] getTrueCourse(Latlng pl, LatLng p2)
private String toText(Double b)

package Long id = new Long(-1)
package Siring name = "'
package String descriptio
package Long createdByld = new Long(-1)
package String type = "other"

package String picture =
private Set markers

Operations
public Point Ofimterest()

public void sstld(Lang i)

public Long getld()

public void_setCreatedByld(Long ¢)

perations
public Marker()

public Marker(LatLng 1)

public Marker(Long i)

public void setidf Lang i)

public Lang getld()

public void setUserld(Lang i)

public Lang getUserld()

public void stFacebookUserld(String s)
public String getFacehookUserd()
public void sstLafitudz(double d)

public void setLongitude(double d)
public double getLatitudz()

public double getLongituds()

public User getUser()

public void setRoutes{ Setr)

public St getRoutes()

public List getRoutesSortedByld()
public int getStnumber()

private void setStnumber(int stnumber)
public String getStaddress()

private void setStaddress(String staddress)
private double getRevlatt{)

private void setRevlatt(double reviatt)
private double getReviongt()

private void setRevlongt(double reviongt)
public double getDistance()

private void setDistance(double distance)
public double gstNearoaddistance()
private void dauble

Euser

Atibutes
package Long _id

packags Long _facshookUserld
package Sting _firstname
package Sting _lastname
package String _email
packags Sting _mobilenum
packags Date _lastlogin
package Date _created
package boolean _sunveydone
package boolzan _isadmin
private Set markers

private Set _routes

Operations
public User()

public void stld(Lang i)

public Long getld()

public void sstFacebookUserld(Lang i}
public Long getFacebookUserld()

public String getNzangad()
private void setNeanoad(String nearoad)

public String getintstrest!()

private void setintstrest1(String intstrest1)

public String getintstrest2()

private void setintstreet2(String intstreet2)
private double getintistance()

private void setntdistance(double intdistance)
public String getMajintstraet1()

private void setMajintstrest! Sting majintstrest!)
public String getMajintstrest2()

private void setMajintstrest2(String majintstraet2)
public double getMajintdistance()

private void setMajintdistance(double majintdistance)
public double getintiatt()

private void setintlatt(double intlatt)

public double gstintlongt{()

private void setintiangt(double intlangt)

private double getMajintlatt()

private void setMajintlatt(double majintlatt)
private double getMajintiongt()

private void setMajintlongt(double majintlongt)
public intgetRemainingCredits()

public double getNormLatt()

public double getNormLongt()

public String getNormntSt!()

public String getNormniSt2()

public boolean isinsideBCIT()

public LaiLng getNormLatLng()

public void doReverseGeocading()

public String getF)
public void sstFirstname(String s)

public String getFirstname()

public void sstLastname(String s)

public String getLastname()

public void setEmail(String s)

public String. getEmail()

public String. getMobilenum()

public void sstMabilenum(String s)
public Date getLastiogin()

public void setLastlogin(Date _lastlogin)
public Date getCreated()

public void setCreated(Date _created)
public baclean getSunveydans()

public void setSurveydone(boolean _sunveydone)
public baolean getisadmin()

public void setlsadmin boolean _isadmin)
public Set getMarkers()

public void setMarkers{ Set markers)
public Set getRoutes()

public void sstRoutes(Set routes)

public Long getCreatedByld()
public void - sethame(String n)
public String getNams{)

public void setDescription(String d)
public String getDeseription()
public void setType(String n)
public String getType()

public void setPicture(Sting p)
public String getPicture()

public void sstMarkers(Set m)
public Szt getMarkers()

public List getMarkersSortedByld()

EjRevGeocode

Attributes
private long serialVersionUID = 1L
private double latt

private double longt

private int stnumber

private String staddress

private double inlatt

private double inlongt

private String city

private String prov

private String postal

private String code

private String description

private double distance

private double nearroaddistance
private String nearroad

private String betweenRoad1
private String betweenRoad2
private int remaining_credits

ElAdmin

Attibutes
private Long id

private int geocodercradits
private Calendar timestamp

Operations
public void setGeocadercredits(int geacadercredits)
public int getGeocodercredits()

public Calendar getTimestamp()

public void setTimestamp(Calendar timestamp)
public void setld(Lang id)

public Long gatld()

Copyright © 2008 Stephen Makonin.

Operations
public RevGeocode()

public RevGeocade(double infatt, dauble inlongt)

public void sefLaft{ double latt)

public double getLatt()

public voidsstLongt(dauble longt)

public double gstLongt()

public void setStnumber(int stnumber)

public intgetStnumber()

public void setStaddress(String staddress)

public String getStaddress{)

public double getinlatt()

public double gstinlongt()

public Streetintersection getlntersection() m
public void satintersection(Strestintersection intersection)
public Strestintersection getMajor_intersection()

public void setMajor_intersection(Streetintersection major_intersection §
public void sstCads(String code)

public String getCode()

public void setDescription(String description)

public String getDescriptian()

public void setNearmaad(String nearroad)

public String getNeamad()

public void setDistance(double distance)

public void setDistance(String distance)

public double getDistance()

public void dauble

public void setNearroaddistancs(String nearroaddistance)
public double getNearaaddistance()

public String getProv()

public void setProv(String prov)

public int_ getRemaining_credits()

public void setRemaining_credits(int remaining_credits)
public String getPostal()

public void setPostal(String pastal)

public String. getCity()

public void setCity(String city)

public String getBetweenRoad! ()

public void setBetweenRoadi(String betweenRoad1)
public String getBetweenRoad2()

public void setBetweenRoad2(String betweenRoad2)

intersect

jor_intersection

ElRoute

Atributes
private Long id = new Long(-1)

private Long createdByld = new Long(-1)
private String name = ""
private String description
private int flatness =0
private int directness = 0
private int traffic =0
private int controlled = 0
private Set markers
private boolean isbeit

Cperations
public Route()

public void setid(Lang i)

public Long getld()

public Lang getCreatedByUserld()
public void sstCreatedByUserld(Lang i)
public void - sethame(Stiing s)

public String getNams()

public void setDescription(String s)
public String getDescription()

public void setMarkers(Set m)

public Sat getMarkers()

public List getMarkersSortedByld()
public void_setFlatness(int fatness)
public int getFlatness()

public void setDirsctness(it directness)
public int getDirectness()

public void ssfTraffic{ int traffic)

public int getTrafic()

public void_sstContralled(int controlled)
public intgetControllzd{)

public boolean getlsbeit()

public void setisbeit(boolean isheit)

[Estreetintersection

Attibutes
private String street1

private String street2

private double latt

private double longt

private String city

private String prov

private double distance

Operations
package Strestintersection()

package Streetintersection(String street!, String street2)
public vid sstStrest’{ String streat1)

public String getStreet!()

public void setStreet2(String strest2)

public String getStreet2()

public void sstDistance(dauble distance)

public void sstDistance(String distance)

public double getDistance()

public double getLatt()

public void setLatt(double latt)

public double getLongt()

public void sstLongt(doublz langt)

public String getCity()

public vaid sstCity(String city)

public String getProv()

public void setProv(String prav)

pg- 15

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

All DB table classes reside in the mww.core package. These classes are responsible for:

Marker:
TurnByTurn:
User:
Admin:

PointOfinterest:

RevGeocode:
Route:

Streetintersection:

3rd Party API Classes

Encapsulates the markers DB table; contains data and functions that
store and manipulate a marker (or a point on a map).

Encapsulates code used to create turn-by-turn directions for a list of
markers.

Encapsulates the users DB table; contains data and functions that store
and lookup a Facebook account information.

Encapsulates the admin DB table; used to store information on number
of time Geocoder.ca was called and with it was last called.

Encapsulates the points_of interest DB table (including poi_markers);
contains data and functions that store and manipulate a point of interest
(POI, or special/flagged marker).

Encapsulates the use of the utility classes that call geocoder.ca.
Encapsulates the routes DB table (including route_markers); contains
data and functions that store and manipulate a route (series of marker
that go from point A to point B).

Encapsulates the location data from a reverse goecode.

= Application

Aftributes

private long serialVersionJID = -541404706087860808L
private String fbApplicationApiKey = "ad16a092dkf343a5bf649ad0f9c3c25("

private String fbApplicationSecret = "129f0a0115d38aa10a0ab6e66120a0:8"

Operations

public FacebookXmlRestClient getClient(HitpSemletRequest request
public void dologin{ HttpSemwletResponse response)

public void doAddApp(HitpSernvletResponse response

public String getFbUserlD(HttpSernvletRequest request)

= callbackProcessor

Attributes

public CallbackProcessor()

Cperations

protected void doGet(HitpSewletRequest request, HitpSemnvletResponse response)
protected void doPost(HitpSenvletRequest request, HttpSenletResponse response)

ElHibernateutil
Aftributes
private SessionFactory sessionFactory

Operations

public SessionFactory getSessionFactory()

All 3™ party API classes reside in either the mww.facebook or mww.hibernate package. These classes are

responsible for:

Application:
CallbackProcessor:
HibernateUtil:

Contains Facebook authentication info and high-level helper functions
Responsible for processing calls from Facebook
High-level helper functions for the Hibernate API

Copyright © 2008 Stephen Makonin. pg. 16

CST BTech Major Project Final Report

RESTful Web Services Classes

COMP 8045 & 8046 (18 Credits)

ElLocalizer

=IRoutes

Attributes
private long serialVersionUJID = 7249378087084825281

Attributes
private long serialVersionJID = 7249378087084825281

Cperations
public Localizer()
protected void doPost({ HitpSenvletRequest request, HttpSenletResponse response)
protected void doGet(HitpSenletRequest request, HitpSenletResponse response)

Cperations
public Routes{)
protected void doPost{ HitpSenwletRequest request, HitpSenletResponse response)
protected void doDelete(HttpSenletRequest request, HitpSenletResponse response)
protected void doGet(HttpSenletRequest request, HitpSenletResponse response)

Cperations
public Picture()
protected void doPost({ HitpSenvletRequest request, HttpSenletResponse response)
private void copyFile(File in, File out)
protected void doGet(HttpSenletRequest request, HitpSenletResponse response)

ElPicture
Attributes E ThankYou
private long serialVersionUJID = 7249378087084825281 T

private long serialVersionUID = 724937808708482528L

Operations
public ThankYou()
protected void doPost{ HitpSenletRequest request, HitpSenletResponse response)
protected void doGet(HttpSenletRequest request, HttpSenletResponse response)
protected void doDelete{ HttpSenletRequest request, HitpSenletResponse response)

[= PointsOfinterest

Attributes
private long serialVersionUJID = 7249378087084825281

Cperations
public PointsCfinterest()
protectad void doPost(HttpSewvletRequest request, HitpSewvletResponse rasponse)
protected void doDelete(HitpSemnletRequest request, HitpSenletResponse response)
protected void doGet(HttpSenletRequest request, HitpSenletResponse response)

All servlets reside in either the mww.restful or mww.survey package. These classes are responsible for:

Localizer:
Picture:
PointsOfinterest:
Routes:
ThankYou:

Copyright © 2008 Stephen Makonin.

Serves XML out to the Mobile MUSE Platform

Serves uploading and downloading of pictures

Serves JSON POl data out and add/edit/delete POls
Serves JSON route data out and add/edit/delete routes
Serves catching calls from the survey website

pg. 17

CST BTech Major Project Final Report

Utility Classes

COMP 8045 & 8046 (18 Credits)

=l geoCoderHandler

ElceoCoderAdapter

Attributes
package Boolean inGeodata = false
package Boolean inlntersection = false
package Boolean inMajor_intersection = false
package Boolean inError = false
package Boolean inLatt = false
package Boolean inLongt = false
package Boolean inStnumber = false
package Boolean inStaddress = false
package Boolean inNearroad = false
package Boolean inNearroaddistance = false
package Boolean inPostal = false
package Boolean inRemaining_credits = false
package Boolean inBetweenRoad1 = false
package Boolean inBetweenRoad2 = false
package Boolean inDistance = false
package Boolean inCity = false
package Boolean inProv = false
package Boolean inStreet! = false
package Boolean inStreet2 = false
package Boolean inLattx = false
package Boolean inLongtx = false
package Boolean inCode = false
package Boolean inDescription = false
package int level =0

Attributes
package String AUTHCODE = "650517634850108725794x581"
package String URL = "http:/fgeocoder.cal”
private double reqglatt
private double reglongt

Cperations
public RevGeocode getResult({)
public GeoCoderAdapter(double latt, double longt)

= MarkerldComparator

Attributes

Operations
public MarkerldComparatar()
public int compare(Ohject marker, Object anotherMarker)

ElRouteldComparator

Attributes

Operations
public RouteldComparator{)
public int compare(Object route, Object anotherRoute)

Operations
public GeoCoderHandler{ RevGeocode out)
public void characters(char ch[0..*], int start, int length)
public void endDocument()

public void endPrefixMapping(String prefix)

public void ignorableVWhitespace(char ch[0..*], int start, int length)
public void processinglnstruction(String target, String data)

public void setDocumentLocator(Locator locator)

public void skippedEntity(String name)

public void startDocument()

public void startPrefixMapping(String prefix, String uri)

public void endElement(String namespacelURI, String localName, String gName)

public void startElement(String namespaceURI, String localklame, String qMame, Attributes atts)

All utility classes reside in the mww.util package. These classes are responsible for:

GeoCoderHandler:
GeoCoderAdapter:

Responsible for connecting and communicating to geocoder.ca

MarkerldComparator:
RouteldComparator:

Contains the data for Reverse Goe Coding
The comparator for Marker classes ID
The comparator for Route classes ID

Copyright © 2008 Stephen Makonin.

pg. 18

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Software Quality Assurance

Source Code Control

Subversion (SVN) was used to track and version all source code changes. The SVN repository resided on
a remote server. SVN clients such as TortoiseSVN for windows and SVN Workbench for Linux where used
on development workstations.

Bug Tracking
Mantis was used to manage bugs and track issues during the testing of the Beta release and the
production release. Mantis was accessed via a web browser and installed on a remote web server.

Unit Testing

Informal unit testing was done on each code block (e.g. function, class) during and at the end of the
coding of each code block. Because of lack of debugging facilities in JavaScript and the need for Ul
interaction, all unit testing was done manually.

Code Walkthrough
After a significant portion of the Project was developed a Code Walkthrough was done to review
architecture, project layout, and overall code quality. The code walkthrough was done informally.

User Acceptance Testing

UAT was done on a daily basis by the Project Manager and by the GAIT Lab. During June to August a
Beta Testing Group was created, consisting of about 12 users from around the BCIT Burnaby Campus to
use MWW and provide feedback. All bugs were recorded in Mantis.

Copyright © 2008 Stephen Makonin. pg- 19

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Configuration Management

Development Workstations
Development workstation was configured as follows:

Operating System: Ubuntu 7.10 (Gusty Gibbon) or greater
Development IDE: Eclipse Europa

Java Environment: J2SE 1.6, ANT, Tomcat 5.5

Object Relational Modeler: Hibernate

Database IDE: MySQL Administrator

SVN Interface: SVN Workbench

ANT build scripts were created to compile the project then copy the .war file to the development server
for update.

Development Web Server
The web server had the following configuration:

Operating System: CentOS 4.6 or greater
Web Server: Tomcat 5.5

Database Server: MySQL 5 Latest Version
Other Daemons: SSH w/ SFTP

This configuration would also be necessary for the production server.

Cell Phones
In order to use MWW on a mobile device a custom application must be downloaded and installed on a
user’s cell phone. The cell phone must have the following capabilities:

e Bluetooth Enabled (for Holux GPS Device) or Built-In GPS
e SMS Enabled
e J2ME Enabled

Directions to the nearest bike route were sent via Bi-Directional SMS using the Mobile MUSE platform.

Copyright © 2008 Stephen Makonin. pg- 20

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Implications of Implementation

The Performance of Java

To compile Java and create .war files, Tomcat needed to be running on the workstation for the each
compile. There were issues with Eclipse IDE responsiveness. ANT build times were often slow causing
long compile times. Issues such as these contributed to speed of development and caused programmer
frustration.

On the mobile side, the challenge will be to create an intuitive mobile device application that will run on
the lowest common denominator device. In J2ME, the Location API is not included on a majority of
mobile devices. This means that a library will need to be created that can talk to Bluetooth and GPS
devices. The library will then need to read and parse GPS data to get the latitude and longitude for the
GPS device.

Server Environments

There were some unexpected server issues. There is a bug in the Java VM that prevented the use of
AMD processor servers to be used. If an AMD processor was used the Tomcat web server would not
responded correctly to Facebook causing Facebook to report an error. Each server needs its own Google
Maps API Key. Facebook must also be configured to point to the server where MWW will be running
from.

The performance of Tomcat was disappointing. Tomcat seems to have a slow response time and can
only handle a load of 10 or so users. In fact, pressing the F5 (refresh) key rapidly in Facebook would
cause the Tomcat server to crash and become non-responsive. To ensure some reliability, scripts were
created to reboot the server once a night.

Every time the .war file was uncompressed, the current web directory was deleted and all uploaded
images would be deleted as well. Extra code was created to store the images in a second place for safe
keeping and then copied to the current running web directory.

Reliance on Facebook and Google Maps

Relying on 3™ party sites, as Mashups often do, creates a dependence on that Sites performance and
changes. Various issues came from this reliance. The Facebook APl is famous for its lack of
documentation, so a lot of experimentation was done to get MWW to work in Facebook; some of the
issues encountered included JavaScript execution and support limitations. Java APl documentation and
library code was also out of sync. The official Java APl was then dropped by Facebook and Facebook
made no guaranties that future changes to its APl would be backwards compatible.

There were refresh and performance issues due to inherent problems with Facebook’s architecture and
network topology. Applications updates could take 2-3 minutes to propagate through to the entire web
caching servers so rapid debugging became an issue. As well, the use of the Facebook API coupled
MWW too closely to Facebook. MWW could not be run in a standalone version without major
programming concessions.

Copyright © 2008 Stephen Makonin. pg- 21

CST BTech Major Project Final Report

Hibernate ORM

COMP 8045 & 8046 (18 Credits)

The use of Hibernate added development time to the project so much that it would have been faster to

create our own Data Access Layer. The lack of documentation and lack of ORM tools (e.g. automated

DAL code generation such as the ones provided by LLBLGen) for Hibernate cause confusion and forced
the database design to change. Issues getting one-to-many relationships to work caused redesign and
reprogramming of these table relationship to be many-to-many; making the database more complex

then it needed to be.

Turn-By-Turn Directions

The challenge will be to take a series of latitude and longitude coordinates and turn them into human

readable directions. For example:

{ "latt": 49.269225, "longt": -122.992453 },

{ "latt": 49.269288, "longt": -122.996742 },

{ "latt": 49.267453, "longt": -122.997814 },

{ "latt": 49.264413, "longt": -122.997824 1},

{ "latt": 49.264408, "longt": -123.00337 },

{ "latt": 49.2612513420326, "longt": -123.003444671631 1},
{ "latt": 49.2592347950603, "longt": -123.004302978516 },
{ "latt": 49.254869, "longt": -123.004329 1},

{ "latt": 49.25188, "longt": -123.00441 },

{ "latt": 49.2517560473552, "longt": -123.002371788025 }

Head W on Highlawn DR (0.31 km).
Turn Left at Beta Ave (0.56 km).
Turn Right at Dawson St (0.40 km).

Turn Left at Goard Way (0.15 km).

You're now at BCIT (total 2.82 km).

Your closest to the Brentlawn route. Directions:
Start at 1706 Delta AVE near the Highlawn Dr intersection.

Turn Left at Willingdon Ave (1.40 km).

One of the biggest issues was the lack of GIS expertise needed to understand Great Circle Math

algorithms. Example code was eventually found on the Internet and converted into a Java function.

Without finding the example code, a cruder version of the above directions would have been delivered.

Copyright © 2008 Stephen Makonin.

pg. 22

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Research in New Technologies

Web 2.0

The use of asynchronous HTTP request (Ajax) was used to communicate between the client browser and
the server to eliminate page refreshing and to provide an enhanced user experience similar to a desktop
application. The use of Ajax is a new emerging technology which requires a lot of manual tweaking and
debugging to perform correctly.

Mashups

A Mashup involves creating a website with data and other elements from a number of other website
APIs and/or other website data aggregators. This can inherently cause issues due to the reliance of other
websites/sources to be stable and readily available for use. If one of the websites/sources goes down or
responds slowly then it has an immediate and adverse negative impact to your website.

REST

For communication between client browser and server, RESTful web services were used. RESTful web
services are a new emerging technology that is an alternative to SOAP. SOAP is complicated and a lot of
overhead is needed when using JavaScript and Ajax. RESTful web services use all of the HTTP protocol
(GET, POST, PUT, and DELETE) unlike SOAP which only uses POST. Because of this, RESTful web services
are resource oriented (or noun-based) unlike SOAP with is more verb-based in design.

GPS Devices

There was a need to create a library/framework that will allow a mobile device to communicate with a
Bluetooth enabled PSP device. With the absence of the J2ME Location APl on the majority of mobile
devices, ways of creating a Bluetooth communication APl needed to be researched.

Copyright © 2008 Stephen Makonin. pg- 23

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Future Enhancements

Multi-Destinations

MWW can grow and improve in many ways. One such way would be to allow MWW to have multiple
destination points, not just BCIT. This would allow a greater user base and would not take much effort to
implement. A table would need to be added to store the different destinations points. A user profile
screen would also need to be added to allow a user to select and store their default destination point.
Only POIs or bike routes for the users selected destination would be rendered. This would be done to
speed up the rendering of the map for improved response times and better user experience. JavaScript
is often implemented poorly in browsers and functions that involve graphical rendering are very
inefficient causing noticeable slowdowns.

Rewrite to PHP

In September of 2008, Facebook dropped support for their Java API. The only official APl Facebook now
supports is PHP. There are 3" party Java APIs but they are slow to keep up and have their own set of
issues and bugs. Going forward, a rewrite should be done to move from Java to PHP. With traditional
web development such a rewrite would be a big effort; not so with Ajax and web services. The majority
of the MWW code base is in HTML, CSS, and JavaScript. Only the web services portion of the project was
written in Java and only that needs to be rewritten. The web services code portion of the project
amounts to about 30% of the code base.

Multi-Mode Routes

Another idea to enhance MWW would be to integrate public transit, and/or bike rental stations, and/or
hitch-a-ride stops. These new features would expand the usage of MWW creating a community of users
that take alternate forms of transportation. This would also allow people to create “multi-mode” routes.
Adding these new features would be risky and a more time consuming task then the above two
enhancements. Serious thought to modifications to the Ul and database would need to be done to
implement this new functionality.

Copyright © 2008 Stephen Makonin. pg. 24

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Conclusions

Web services are increasingly becoming a more widely used solution to connect heterogeneous systems.
Long gone are the days where projects were created to replace viable legacy systems. By using a simple
protocol like HTTP, software that exists on these heterogeneous systems can be exposed and ran by any
other system. In the end, it is much cheaper and less risky to add a web server to a legacy system then it
is to rewrite it.

The uses of social networks, such as Facebook, are becoming a normal part of the everyday life of
individuals. By writing an application for a social network you have instant access to these users,
developers worry less about Google site placement and creating a standalone system that users have to
signup to use. By writing an application for a social network, the adoption rate for application use is
much higher as it works on the principle of “word of mouth”.

The Map with Wheels project provided an excellent opportunity to use Java and REStful web services. It
allowed me to explore the concept and the challenges of creating a Mashup. It also allowed me to work
on a project that was research based which is often different for the business-driven type projects |
normally work on.

Copyright © 2008 Stephen Makonin. pg. 25

CST BTech Major Project Final Report

Appendix A: Various Screen Shots

Home Profile Friends - Inbox ~

facebook

COMP 8045 & 8046 (18 Credits)

Harne Discussion About

& Map with Wheels

Stephen Makonin

Help Disclaimer

|+ Add Bike Route or POI |

P kiepunog — &

|18

Map Legend

Hﬁginér " BCentral Rark 4 .Ij'@ = ' 4| [#a
oo i | 91 Mg clata @208 Telel.&tl

- Rur]
._Q:\
\J Bu
Lak
i
[y -H_""‘-h.__
Sl

Deer Lake

Deer,
Lake Park!i =

Route Highlighting: '. Selected " Mok Selected

POI: @ Hazard ! Controlled Crossing Cut Through @ Other

Highlight by: Quay to BCIT

Geacading provided by GeaCoder.ca | Created by BCIT's GAIT Lab

s

This the main page of MWW.

Copyright © 2008 Stephen Makonin.

pg. 26

CST BTech Major Project Final Report

Home Profile Friends -~ Inbox -

Stephen Makaonin

COMP 8045 & 8046 (18 Credits)

facebook

Home Discussion About Help

& Map with wheels

Disclaimer

ks Add Bike Route or POL J

Route Highlighting: '. Selected " Matk Selected

POI: @ Hazard ! Controlled Crossing Cut Thraugh m Other

e =
[
- -"'Sem:-n: Brentlawn by Stephen Makonin
=S e Marrows B
'a'\".'_E'.wP?;?]mn i : & shart but dangerous route! o
=+ S ok “—
St IEI a |5 Take this route if vou're late, Cycling it will make vou say, "These hills @
= =l arent so bad." Crossing major roads is easy - laks of controlled
Loy inkersections. It has vou playing in lots of traffic,
- - [o : Highlight | Edit | Discussion | Delete
EHastings St __ — 11— —
2 L I
=] — F '- TETE 1 -
[: _'_Par i [l
| | — = Willingdon
SR et
—1 LI L Riwpert Park.]|
e _|E_.1!T.ﬂx:l.'-e = :__ - =
]
i - ~ |
SEE== B\ oEEN ok
; —__‘, \ | _I | m)
B_’.. .~ . E= et eSS SSSRn '_| |
r;"| [1'—,._ ‘m 2 {_ T 7 __
Grandu'lew I"M':,‘ .:: : l “- i , o,
i T S LR (s] i e=r——— = i
S0 i = fanag | Map MeE20BE RS Atlas - 7o of L]
Map Legend

o]

Highlight by: | Brentlawn

Geocoding provided by GeoCoder.ca | Created by BCIT's GAIT Lab

This is and example of an information window.

Copyright © 2008 Stephen Makonin.

pg. 27

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

facehook Home Profile Friends ~ Inbox -

Home Discussion About Help Disclaimer

& Map with Wheels (+ Add Bike Route or PDI)

SN LTTEES Add POI (Point of Interest) |

Second;
Marrows Fark
Scenic Park
2
\.fant_bnuuer Cur[;c:'r(al or
| Heights Capitol Hil
\ Shellburn 5
E Hastings 5t Flasiings ST Westiidge \35‘
I g (7 aton Duthie=-Ur
A = Park
Adanac w
=
]
m pod w0
2 S bl
Hl Brentwood -
= Fark =
[ve E st Ave = b
] & 8
= z E@ Loy
= £ i1
2 F) Fny =g
] @ |
bth Ave E“é \;
g \\- SEE oy
Grandview Hwy. - A —) '*'-‘ag,
FOMERED EY e —c J—,‘___,}_,_ —_—) @
i le Falame Fark g N - g
ks ogc 2 gy Canzg M et €2008 Tdje Aflas - Teii of Liia]

Find your starting point. Click on intersections that change your route heading.

Enter the name of your route and briefly describe it, The name and description will appear of the map when your route is

selected,
Name Your Route: My Route
Describe It: This is the route I take everyday... rain or shine!

Select a value from each of the Following 4 tyvpe of ratings to better describe vour bike route to others, Your rouke will show
up on the map in different colours depending on how vou rate vour route,

How direct is your route? Take this rouke if you're lake [»]
How flat is your route? These hills arent so bad. [V]
Are there controlled intersections? Easy - lots of controlled intersections [v]
How much car traffic? Has vaou bike in some car traffic [V]

Flease only add legitimate/real bike routes, All other will be deleted by the the Admins,

or Caniel

This is the form used to add/edit bike routes.

Copyright © 2008 Stephen Makonin. pg. 28

CST BTech Major Project Final Report

facehook Home Profile Friends Inbox

LGS Add POX (Point of Interest)

Home | Discussion | About Help | Disclaimer
& Map with Wheels (+ Add Bike Route or POI)

COMP 8045 & 8046 (18 Credits)

o | l_l | |l_|l J
CaplmllHlll.ﬁI

._"—.
a

ind and click on the location you want to add a POI to.

Describe your POLin more detail, You can, optionally, add a picture for others ko see,

Type of Map POI? Pick one. ..
Show Route: Pick ane. ..
Name Your POL:
Describe It:
Add a Picture (1MB Limit): -
Mo file chosen

Flease only add legitimate freal POIL All other will be delsted by the the Admins,

or Caniel

Select the bype of POI vou would like to create, Select a route o be drawn on the map so you can place a POIL on it easily,

This is the form used to add/edit POI.

Copyright © 2008 Stephen Makonin.

pg. 29

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

facebnuk Home Profile Friends - Inbox - Stephen Makonin — Settings -

& Map with Wheels Discussions
Back to Map with Wheels

Show: | All Topics (%] Search all kopics

Displaving all 3 bopics.

Anyone Ride from Coquitlam? Latest post by Robin Day

3 posts by 3 people Created on September 10, 2008 at 10:54pm Posted on Ockober 2, 2008 at §:11pm
Montreal Public Bike System Latest posk by Joel Carter

1 post by 1 person Created on June 23, 2008 ak 9:55am Posted on June 23, 2003 at 9:55am
Willingdon 8 Moscrop Construction Latest post by Clay Howesy

1 post by 1 person Created on April 12, 2008 ak 10:08am Posted on April 12, 2008 at 10:05am

This is an example of what the discussion groups look like.

Copyright © 2008 Stephen Makonin. pg. 30

CST BTech Major Project Final Report COMP 8045 & 8046 (18 Credits)

Appendix B: Letter from Project Sponsor

December 15, 2008

To the Practicum Review Committee;

| am writing you to confirm that Stephen Makonin worked full-time on the Map with Wheels project.
Stephen Makonin worked on Map with Wheels full-time from January 26", 2008 to May 1%, 2008 and
part-time until August 8™ 2008. The project was completed, released, and is currently running in
production. The Facebook application is being used by the BCIT community and a number of people
have contributed bike routes and points of interest.

Sincerely,

Clay Howey
Research Head
BCIT GAIT Lab

Copyright © 2008 Stephen Makonin. pg- 31

BCIT Bachelor of Technology in Computer Systems

Major Project
Supplement

COMP 8045 & 8046 (18 Credits)

;,»
i

MAPITH
Copyright © 2008 Stephen Makonin. WHEELS

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

Table of Contents

T a oY [V 4T] o USRS 3
System & Library APl INTEIraCiONoii ittt e e e et e e e e ete e e e e eate e e e e enrae e e esabaeeeenranas 4
ST B = A N1 T DT =Tot A o] o [N 5
Ajax & RESTIUI WED SEIVICESuvviieiiiiee ettt e e et e e e et e e e e ebte e e e sbaeeesebteeeessaneeesseneaeannes 5
21 I Yo TN I o 1T Y= SR 9
J2IMIE & GPS DBVICES. .. uetitiiiiieeeeittte ettt e e ettt e e sttt e e sttt e e sttt e e s abb e e e s bbeeeeaabbeeesansbeeesaasbeeesanbaeesanbaeesanrenas 10

Copyright © 2008 Stephen Makonin. pg. 2

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

Introduction

This document is intended to accompany the CST BTech Major Project Final Report document; as it is an
extension of that document. The goal is to further satisfy the curiosity of technically-minded individuals
who have read the Final Report and would like to see specific implementation details. The Map with
Wheels (MWW) project has covered a number of specific areas that can be expanded upon.

A diagram details the interaction that the Map with Wheels codebase has with external libraries, APIs,
services, and systems is presented with communication details between these modules. Implementation
details and snippets are provided to further explain how issues where tackled in the following areas:

e Turn-By-Turn Directions

e Ajax & RESTful Web Services
e Bike Route Editing

e J2ME & GPS Devices

Please refer to specific areas within the Final Report to gain a high-level understanding and overview of
each subject expanded upon in this Supplement.

Copyright © 2008 Stephen Makonin. pg. 3

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

System & Library API Interaction

Map with Wheels used a number of external libraries, APIs, services, and systems to provide its full
feature set. The following diagram illustrates the relationship and communications used between Map
with Wheels and all other external entities:

Carvas Page (HTML)
@
« Google Map HTTF RESTul Calls
% JavaScript | (Retuns Images & Data)
=
m
ﬂ Ajax Facebook _ HTTP Redirect {_blank)
g JavaScript JavaScript ¥ HTTP GET
wn
e
@
=] HTTP RESTiul Calls (Returm JSOM formmatted data)

HTTP POST w! XML (Reverse Geo Coding Lookup)l——:y

HTTP GET (Return Turn-by-Turm Directions)}———7—
HTTP GET
'y wi Query String -
— T
Core Classes RESTIUl Serviets I'Erzlc“;sacs-:r
(Java) [Java) {Java)
5 b ‘ HTTP POST
& Tomcat 5.5 Wab Server wi XML
]
w
L r
[]
L]
s Hibemate API Facabook API
- (Java) (Java)
E
o
© L
=
N (ts7) s
MaoblebMUSE.ca
y ﬁ/ GSM SIM Medem
J2ME P L/,;'/’ g
_w| Messaging A -
JJJ(___.- AP ’:’{,/ \' // Yhﬁﬁ
- e - <,
MWW / \ﬁeﬂ‘b@
JAME 7
Applat Map with Wheels System
e JZME
“{ Bluetooth —TL
il BlusTooth = e External System / API

Cell Phane

Copyright © 2008 Stephen Makonin. pg. 4

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

Turn-By-Turn Directions

This area of the code presented some challenges. At first | did not even know what to call this area for
GIS to be able to do proper searches. After about one full day of Google searching | found the subject
matter | was looking for. This was an area of GIS mathematics called Great Circle. One of the issues with
the generating directions was the calculation of Bearing, which changes when travelling from point A to
point B. There are also different results in finding North, South, East and West when calculating Initial
Bearing vs. Final Bearing.

Further searching lead me to understand that doing the calculation of True Course would give me the
results | desired. | found a Java Applet that does this very thing (http://lionel.le.tallec.free.fr/2/TH/calc/).

Searching on Google for True Course let me to http://williams.best.vwh.net/gccalc.htm; code written in

JavaScript to do this. | was able to convert the code to Java as seen below:

info = getTrueCourse (m.getNormLatLng (), n.getNormLatLng());
currentDistance = infol[l];
currentDir = toText (infol[0]);

private double[] getTrueCourse (LatlLng pl, LatLng p2)
{

double latl = (java.lang.Math.PI / 180) * pl.getLatitude();
double lonl = (java.lang.Math.PI / 180) * pl.getLongitude();
double lat2 = (java.lang.Math.PI / 180) * p2.getLatitude();
double lon2 = (java.lang.Math.PI / 180) * p2.getLongitude() ;

double a = 6378.137 / 1.852;
double dc = 1.852;

double invf = 298.257223563;
double EPS = 0.00000000005;
double iter =1
double MAXITER 100;
double £ =1 / invf;

double r = - £;

double tul r * java.lang.Math.tan(latl);
double tu2 = r * java.lang.Math.tan(lat2);

H ~e

=

double cul = 1.0 / java.lang.Math.sqrt (1.0 + tul * tul);
double sul = cul * tul;

double cu2 = 1.0 / java.lang.Math.sqgrt (1.0 + tu2 * tu2);
double sl = cul * cuZ2;

double bl = sl * tu2;

double f1 = bl * tul;

double x = lon2 - lonl;

double d = x + 1;

double sx = 0, ¢cx =0, sy =0, cy =0, vy =20, sa =20, cz =0, e = 0;
double ¢ = 0, c2a = 0;

Copyright © 2008 Stephen Makonin. pg. 5

http://lionel.le.tallec.free.fr/2/TH/calc/
http://williams.best.vwh.net/gccalc.htm

CST BTech Major Project Supplement

while ((java.lang.Math.abs(d - x)
{

iter = iter + 1;
SX =
cxX =
tul = cu2 * sx;
tu2 = bl
sy =
cy = sl * cx + f1;
y =
sa = sl * sx / sy;
c2a =1 - sa * sa;
cz = f1 + f£1;
if(c2a > 0.0) cz =
e =cz * cz * 2.0 -
((=3.0 * c2a + 4.0)
= x;
= ((e * cy * ¢ + cz)
(1.0 = ¢)

X X Q0
|

}

double
double
double
double

mx =
my =
faz =

crsl2 = faz *

I+
Il
—

X Q0 QX X X
I
S
w
~J
@)
*
X
*
X
|

= e * cy;

((s
d/ 4.0 + cz)
s *= dc;
double[]

result = {crsl2,

return result;

> EPS)

java.lang.Math.atan2 (sy,

* x * £ + lon2

java.lang.Math.sgrt ((1 /

sti

&&

java.lang.Math.sin (x) ;
java.lang.Math.cos (x) ;

- sul * cu2 * cx;
java.lang.Math.sgrt (tul * tul + tu2

cy - cz / c2a;
1.0;

java.lang.Math.atan2 (tul,
2 * java.lang.Math.PI;
mx - my * java.lang.Math.floor (mx / my);
(180 / java.lang.Math.PI);

(r * r)

(sy * sy * 4.0 - 3.0)
* sy * d + y)

cy);

COMP 8045 & 8046 (18 Credits)

(iter < MAXITER))

* £+ 4.0)

* sy *c+vy)
- lonl;

(1.0 — e - e) *

* tu2);

* c2a * £/ 16.0;

* saj

tu?);

1) * c2a + 1);

cz *d / 6.0 - x)
* c * a * r;

Now that we have calculated the current direction in degrees we can convert it to textual directions, like

SO:

if (b >= 337.5 || b <= 22.5)

else 1f (b > 22.5 && b < 67.5)
else if (b >= 67.5 && b <= 112.5)
else if (b > 112.5 && b < 157.5)
else if (b >= 157.5 && b <= 202.5)
else 1f (b > 202.5 && b < 247.5)
else 1f (b >= 247.5 && b <= 292.5)
else 1f (b > 292.5 && b < 337.5)
else

Copyright © 2008 Stephen Makonin.

output
output
output
output
output
output
output
output
output

"N" ;

"NE " ;
"E" ;
"SE";
"Ss";

" SW" ;
"W" ;
"NW" ;
"ERROR";

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

We wanted to make the directions more relitave. Instead of “North, then West” we wanted to use “Turn
Left, then Turn Right”. To do the | converted the textual directions from a number between 0 and 7, as

below.

if (dir.compareToIgnoreCase ("N") == 0) output = 0;
else if(dir.compareToIgnoreCase("NE)y == 0) output = 1;
else if(dir.compareToIgnoreCase ("E") == 0) output = 2;
else if(dir.compareToIgnoreCase ("SE") == 0) output = 3;
else if(dir.compareToIgnoreCase ("3") == 0) output = 4;
else if(dir.compareToIgnoreCase("SW) == 0) output = 5;
else if(dir.compareToIgnoreCase ("W") == 0) output = 6;
else if(dir.compareToIgnoreCase ("NW") == 0) output = 7;
else output = -1;

The is subtracted the next direction number from the previous direction number to get the relative turn
description, like so:

int prev = dirToNum(prevDirection);
int next = dirToNum (nextDirection);
int current = prev - next;
(prev == -1 || next == -1) return "EEK!";

f (current == 0) return "Continue on";
f (current == 4 || current == -4) return "Turn Back";
if (current < 0) return "Turn Right";

else return "Turn Left";

Copyright © 2008 Stephen Makonin. pg. 7

CST BTech Major Project Supplement

Ajax & RESTful Web Services

COMP 8045 & 8046 (18 Credits)

The use of asynchronous HTTP request (Ajax) was used to communicate between the client browser and
the server to eliminate page refreshing and to provide an enhanced user experience similar to a desktop
application. For communication between client browser and server, RESTful web services were used.

The following JavaScript code sets up the browser to use asynchronous HTTP calls. Various checks are

made because some browsers implement this in a different way.

var routeHttp = getXmlHttpObject (),
function getXmlHttpObject ()
{
var xmlhttp = null;
try
{
// Firefox,
xmlhttp =

Opera 8.0+, Safari
new XMLHttpRequest () ;
catch (e)

// Internet Explorer
try

xmlhttp =

xmlhttp =

}

return xmlhttp;

In Java you would create a Servlet to handle a HTTP GET request.

new ActiveXObject ("Msxml2.XMLHTTP") ;

new ActiveXObject ("Microsoft.XMLHTTP") ;

public class Routes extends http.HttpServlet implements javax.servlet.Servlet

{
protected void doGet (HttpServletRequest rq,
{

PrintWriter writer = rp.getWriter();

An");

writer.print (".

writer.flush();
writer.close();

Copyright © 2008 Stephen Makonin.

HttpServletResponse rp)

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

When making Ajax calls using HTTP GET then following JavaScript code is executed. A call back function
is provided to retireve resulting data because these calls are asyncronous.

getFromRestfulService (routeHttp, 'Routes', loadRoutes);

function loadRoutes ()
{
if (hasServiceResquestCompleted (routeHttp))
{
gRoutes = eval (routeHttp.responseText) ;
createRoutesSelector () ;
drawRoutesAndPOI () ;

}

function hasServiceResquestCompleted (xmlhttp)
{
if (xmlhttp.readyState == 4)
{
if (xmlhttp.status == 200)
return true;
else
throw (xmlhttp.responseText) ;
}

return false;

}

function getFromRestfulService (xmlhttp, url, event)
{
if(xmlhttp!=null)
{
xmlhttp.open ("GET", url, true);
xmlhttp.onreadystatechange = event;
xmlhttp.send(null);

alert ("Your browser does not support XMLHTTP.");

Copyright © 2008 Stephen Makonin. pg. 9

CST BTech Major Project Supplement

Bike Route Editing

The main issue with this functionality is making the editing of a bike route intuitive and to have a well

COMP 8045 & 8046 (18 Credits)

responding HMI. When editing routes a user can: add a new marker at the end or in the middle of bike

route, delete any of the placed markers, and move any of the placed markers. Events needed to be

trapped and a lot of visual/interactive testing was done to tweak how the HMI functioned and

performed. There is an online video demonstrating this at: http://server20.ielbcit.ca:81/mww-demo/.

First we need to create a listening event. This even with handle: clicking on an existing marker (delete

mark) and clicking on the map (add marker). The first marker is a special icon.

gEvenlListener = GEvent.addListener (gMap, "click",
function (marker, point)

{

// check for marker type to avoid error message
if (marker)

{

else

}

// does this marker exist in our list? if no exit

var index = findMarker (marker) ;
if (index == -1)
return;

// if the 1lst marker is deleted then
//setup the next marker as the 1lst
if(index == 0 && listRouteMarkers.length > 1)
listRouteMarkers[l] =
createEditMarker (listRoutePoints[1], true);

// remove this marker from our list
listRouteMarkers.splice(index, 1);
listRoutePoints.splice(index, 1);

//place a new marker on the map and add it to our list
listRouteMarkers.push (

createEditMarker (point, !listRouteMarkers.length));
listRoutePoints.push (point) ;

//render the route to the screen
drawAddChanges () ;

Copyright © 2008 Stephen Makonin.

pg. 10

http://server20.ielbcit.ca:81/mww-demo/

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

The createEditMarker () function creates the markers and setup additional properties such as

making the marker dragable.

function createEditMarker (point, isStarting)

{

var marker;

// make the fist marker "special" make sure the markers are dragable
if(isStarting)
marker = new GMarker (point, GMarkerOptions =
{
icon: redMarkerPin,
draggable: true,
title: "Click to delete or drag to move this marker."
1)
else
marker = new GMarker (point, GMarkerOptions =
{
draggable: true,
title: "Click to delete or drag to move this marker."

) ;

GEvent.addListener (marker, "mouseover",

function ()
{ for(var i = 0; i1 < listRouteMarkers.length; i++)
{ if (listRouteMarkers[i] == marker)
{ gMouseOverMarker = i;
return;

})

GEvent.addListener (marker, "mouseout",
function ()
{

gMouseOverMarker = -1;

})

// handle marker dragging
GEvent.addListener (marker, "dragend",

function ()

{
listRouteMarkers|[gMouseOverMarker] = this;
listRoutePoints[gMouseOverMarker] = this.getPoint();

drawAddChanges () ;
)

return marker;

Copyright © 2008 Stephen Makonin. pg. 11

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

We now want to render the changes to the screen so this function is called from the first snippet of
code.

function drawAddChanges ()
{
gMap.clearOverlays();
for(i = 0; i < listRouteMarkers.length; i++)
{
gMap.addOverlay (listRouteMarkers[i]);

if (i)

{
var points = new Array();
points.push(listRoutePoints[i-1]);
points.push(listRoutePoints[i]);
var line = createEditLine (points);

gMap.addOverlay (line);

We need to setup the lines to handle click events so they can be split and new markers added.

function createEditLine (points)
{
var line = new GPolyline (points, "#AA0000", 7, 0.50,
{clickable: true});

// handle adding markers in the middle of a route
GEvent.addListener (line, "click",
function (point)
{
for(var 1 = 0; 1 < listRoutePoints.length; i++)
{
//has the line been clicked on?
if (listRoutePoints[i].x == this.getVertex(0) .x &&
listRoutePoints[i].y == this.getVertex(0) .y)
{
//yes, so split the line at the point where clicked
//and add a new marker
var newMarker = createEditMarker (point, false);

listRouteMarkers.splice(i +1, 0, newMarker);
listRoutePoints.splice(i +1, 0, point);

drawAddChanges () ;
return;

});

return line;

Copyright © 2008 Stephen Makonin. pg. 12

CST BTech Major Project Supplement COMP 8045 & 8046 (18 Credits)

J2ME & GPS Devices

There was a need to create a library/framework that would allow a mobile device to communicate with
a Bluetooth enabled GPS device. With the absence of the J2ME Location APl on the majority of mobile
devices, querying the Bluetooth communication APl manually had to be done.

//find all the bluetooth devices

int size = BluetoothManager.getInstance () .find();
//loop through each device as find the holux gps device
for(int 1 = 0; 1 < size; 1i++)

{
if (BluetoothManager.getInstance () .getDeviceName (1) .indexOf ("HOLUX") > -1)
{
btDevice = i;
break;

}

//a holux gps device, read location

if (btDevice != -1)

{
waitForm = new Form("Finding your location...");
display.setCurrent (waitForm) ;

BluetoothGPSInterface.getInstance () .setDevice (
BluetoothManager.getInstance () .getDeviceName (btDevice),
BluetoothManager.getInstance () .getServiceURL (btDevice)) ;

BluetoothGPSInterface.getInstance () .start ()

if (BluetoothGPSInterface.getInstance () .getIsConnected())
{
GPGGAString location =
BluetoothGPSInterface.getInstance () .getLocation();
boolean parsable = false;

//wait for gps string data
while (!parsable)
{

location = BluetoothGPSInterface.getInstance () .getLocation();

try

{
Double.parseDouble (location.getDMSLatitude()) ;
Double.parseDouble (location.getDMSLongitude ()) ;
parsable = true;

}

catch (Exception e)

{
parsable = false;

}

}

latText.setString (String.valueOf (location.getLatitude()));
longText.setString (String.valueOf (location.getLongitude()));

Copyright © 2008 Stephen Makonin. pg. 13

CST BTech Major Project Supplement

COMP 8045 & 8046 (18 Credits)

//send and sms to the mobiloe muse platform
//directions will be sent back via sms

String text = "clay FIND LATT " + latText.getString() +
" LONGT " + longText.getString();

String address = "sms://+7785526873";

try

{
MessageConnection conn =
(MessageConnection) Connector.open (address) ;
TextMessage msg =
(TextMessage) conn.newMessage (MessageConnection.TEXT MESSAGE) ;
msg.setPayloadText (text) ;
conn.send (msqg) ;

Form waitForm = new Form("You will get an SMS");
waitForm.addCommand (exitCommand) ;
display.setCurrent (waitForm) ;

}

catch (IOException e)

{
e.printStackTrace () ;

}

Here is an example of the GPS data string that is sent by GPS devices and what the data means.

/*

Example:

Where:

*/

GGA
123
480
011
1

08

0.9
545
46.

SGPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M, ,*47

Global Positioning System Fix Data
519 Fix taken at 12:35:19 UTC
7.038,N Latitude 48 deg 07.038' N
31.000,E Longitude 11 deg 31.000" E
Fix quality: 0 = invalid
1 GPS fix (SPS)
2 = DGPS fix
3 = PPS fix

4 = Real Time Kinematic
5 = Float RTK
6 = estimated (dead reckoning) (2.3 feature)
7 = Manual input mode
8 = Simulation mode

Number of satellites being tracked

Horizontal dilution of position
.4, M Altitude, Meters, above mean sea level
9,M Height of geoid (mean sea level) above WGS84
ellipsoid

(empty field) time in seconds since last DGPS update

(em
*47

pty field) DGPS station ID number
the checksum data, always begins with *

Copyright © 2008 Stephen Makonin. pg. 14

