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Abstract—The smart meter is often heralded as the key
component supporting energy displays that can notify home
occupants of their energy usage. But, a smart meter is only a
digital power meter with enhanced communications capabilities
– it is not actually smart. We need to look beyond the smart
meter and define what intelligence is needed to actually make
a meter smart. One area with promise is load disaggregation.
Load disaggregation can be used to determine what loads
contributing to the consumption reading at the smart meter. A
smart meter incorporating load disaggregation intelligence can
be seen as going beyond the traditional smart meter – what
we call a cognitive power meter (c-meter). However, using load
disaggregation, in its current form, is not feasible. We critically
review the requirements for a c-meter and provide insights as to
how load disaggregation research needs to change to make the
c-meters a reality.

Index Terms—Power Meter, Smart Meter, Load Disaggrega-
tion, Cognitive Analysis, Demand Response, Energy Conservation

I. INTRODUCTION

Currently much of the world is focused on reducing elec-
tricity consumption; our increase in consumption is neither
economically nor environmentally sustainable. Additionally,
there is a growing consensus that environmental and economi-
cal sustainability are inextricably linked. As the cost of power
rises, we must find technological solutions that help reduce
and optimize energy use. For homeowners and occupants, one
way to achieve this goal is to monitor their power consumption
through an effective display mechanism.

At the same time, utility companies around the world are
replacing electro-mechanical power meters with new smart
meters. These smart meters are simply digital power meters
with enhanced communications capabilities – they are not
actually smart. Coupled with an in-home display (IHD) home
owners can receive real-time whole-house power and energy
readings. Unfortunately, whole-house readings do little to
inform customers how their individual appliances affect the
aggregate power reading value. Furthermore, with initiatives
such as time-of-day usage charges (peak charges) and demand
response (DR) [1] homeowners are left with little to no
information about their energy consumption to work from.

A. Demand Response Example Scenario

Let us propose an example scenario (S1) that will be
revisited throughout the paper.

A DR sign comes through a smart meter and is
displayed on an IHD. The IHD notifies the occupant
that if they immediately cut their consumption by
5kW they will receive a financial intensive. To opt-
in occupant must cut power consumption within the
next two minutes. The occupant who is interested
in participating looks at his IHD and sees that his
current demand is 15kW. The occupant concludes
that he may be using too much power and is in-
terested in participating. The occupant now has the
challenge of discerning what appliance is consuming
what amount of power. The occupant only has a real-
time whole-house power reading to work from.

It is doubtful that the occupant knows which appliance(s) to
turn off to meet the 5kW request without walking through the
whole house and examining what appliances are on. Then the
occupant would then need to turn off each appliance one at a
time and go back to the IHD to observe the power demand to
see if it meets the 5kW request. During this time consuming
process, the occupant could easily miss out on the opt-in DR
request. The smart meter has not done anything to help the
occupant, it has just acted as a communication gateway.

B. Cognitive Power Meter Definition

What if we look beyond the smart meter to a meter that
has the intelligence to help the occupant in S1 participate
in the 5kW opt-in DR request. One way to help is to have
intelligence that can discern what appliances are running from
examining the whole-house power reading. This is called load
disaggregation; first developed by Sultanem [2] and then Hart
[3]. A smart meter with load disaggregation intelligence can
be seen as going beyond the smart meter – what we call a
cognitive power meter (c-meter) (see Figure 1).

With a c-meter, the IHD can display a list of appliances or
combination of appliances that the occupant can choose from
to meet an opt-in DR request in a timely and confident fashion.
So why is there no c-meter? Load disaggregation in its current
form is not feasible, although some initial attempts in devices
such as the TED-5000 have allowed use in restricted contexts1.
There is an optimization problem (having the algorithm fit

1See the “I want to view more than my overall usage.
How can I monitor an individual appliance?” FAQ question at
http://www.theenergydetective.com/faq (last accessed January 26, 2013).
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Fig. 1. The anatomy of a smart meter. To address privacy concerns the load
disaggregation module should be placed on the Home Area Network (HAN)
side and only communicate with devices on the HAN.

on an embedded MCU) and a generalization problem (having
the algorithm disaggregate accurately on different houses with
considerable retraining). We critically review these issues for
the remainder of our paper.

II. DEFINING LOAD DISAGGREGATION

In the computational sustainability research field, load dis-
aggregation goes by many names and acronyms, including
non-intrusive load monitoring (NILM) and nonintrusive appli-
ance load monitoring (NIALM or NALM). Load disaggrega-
tion researchers have proposed many strategies to disaggregate
loads from the whole-house power reading [2], [3]. However,
recently researchers have focused on using smart meter data
as a more realistic solution [4]–[12]. Other research which
proposes specialized expensive equipment to disaggregation
using high-frequency readings (e.g. 10kHz [13], 15kHz [14]),
measurements not supplied by a smart meter (e.g. reactive
power, harmonics [15]), or customer built measurement tools
(e.g. measuring EMI [16]) are out of the scope of this paper
and will not be reviewed.

A. Zeifman’s Requirements

Zeifman [2] has identified six solution requirements that
further restrict the solution space for applying load disaggre-
gation in a home and should be considered. Feature selection
constrains power measurement to those of a smart meter (real
power and a frequency no greater then 1Hz). Accuracy is
acceptable to occupants when it is greater then 80%. Little-to-
no training is needed to reduce the burden on occupants setting
up such a system. Near real-time capabilities is needed so
that feedback is provided in time for occupants to respond.
Scalability and robustness is needed to accommodate the
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Fig. 2. The four load types [3], [11]. Power was monitored for 5 hours (at
per minute readings) showing: (a) a set of six 65W light bulbs being turned
on and then off, (b) a dishwasher cleaning a full load of dishes, (c) the HVAC
fan which runs constantly for air circulation, and (d) a variable load such as
a light dimmer where the knob is continuously turned creating a ramp-effect.

recognition of new loads. Various load types need to be
recognized and detected when running (see Figure 2).

There are two issues with Zeifman’s requirements. First,
we believe that accuracy needs to be much higher than 80%.
Any inaccuracies in the load disaggregation system would
ultimately cause a loss of confidence in the system by oc-
cupants. We believable that accuracy needs to be at least 95%
because opt-in DR requests may be of a critical nature (e.g.
avoid a grid brownout) and commitment without action due to
inaccuracy will hinder the power utility’s avoidance strategy.
Second, having the four load types (Figure 2) complicates the
load disaggregation system being designed. Simple on/off loads
and constantly on loads are just special cases of finite state
loads, so they need to be combined into one type–finite state.
Or, finite state loads need to be decomposed into multiple
simple on/off loads. Continuously variable loads usage is often
by appliances/tools/equipment that consumes small amount of
power. So we question whether the disaggregation of such
loads is really needed.

B. A Complex Problem

There are five key problems that we have identified which
further challenge the success of a load disaggregation system.



1) Multiple, Simultaneous Load Events: Multiple, simul-
taneous load events (switching on/off or changing states)
can cause a system to incorrectly identify active loads. For
example, if we have two 100W lights and one 200W hand
blender, then turning on two lights simultaneously could be
mistakenly classified as the hand blender being used.

2) Noisy Power Signals: Electrical systems are inherently
noisy. Causes of noise include harmonic distortions, small
fluctuations in appliance consumption, electronics that are
constantly on, and appliances turning on/off with consumption
levels too small to detect. Less noisy a power readings will
result in a more accurate load disaggregation system.

3) Dynamic & Changing Usage: Over a period of time,
the number of appliances within a home can increase and
decrease. They can also be replaced (e.g. an old dishwasher
breaks down and replaced with new, more energy efficient
model). These chagnes are coupled with the fact that occupant-
home interaction varies greatly from one home to another, or
over a long period of time [17], [18]. So it can be difficult
for a load disaggregation system to generalize over data from
other homes or other periods of time.

4) Computational Cost & Complexity: Practicality de-
mands systems that process data online and react in real-
time to changes in the power being monitored. Some systems,
depending on the machine learning technique, can have a
computational cost of O(nm). To reduce the computational
cost, approximation algorithms can be used but at the cost
of reduced accuracy. This results in an optimization problem
when wanting to implement load disaggregation on an embed-
ded processor.

5) Privacy: There are many privacy concerns that involve
load disaggregation which centre around utility companies
being able to tell what appliances a homeowner is using,
and having the utility company turn off appliances without
a homeowner’s consent. Our opinion is that the intelligent
load disaggregation part of the c-meter needs to exist on
the Home Area Network (HAN) side of the meter as we
noted in Figure 1. If the load disaggregation module only
communicates with devices on the HAN then privacy concerns
should be alleviated.

III. LOAD DISAGGREGATION ANATOMY & REVIEW

Figure 3 depicts a summary of the different strategies used
for load disaggregation systems which are discussed in the
four subsections below. The depicted resulting benefits are
discussed in Section IV-A.

A. Power & Time Features

Smart meters can communicate real power (kW) and en-
ergy (kWh) readings every 1–5 seconds (0.2–1Hz) [19]. Re-
searchers are limited in what measurements they can use. So
different time-power based and power change measurements
are used.

Zeifman et al. [10], [11] distinguished between negative
power changes and positive power changes at 1Hz sampling.
For positive power changes they measured the initial power
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Fig. 3. An overview block diagram of strategies (rounded rectangles) different
researchers have used to implement their load disaggregation system and the
resulting benefits (cornered rectangles) that can be seen for such a system.

spike when an appliance was turned on. Building a histogram
of past appliance usage, they calculated duration time on, as
well. However, only appliances that were simple on/off could
be detected and power data was disaggregated offline.

Kim et al. [4] collected power data at 1Hz sampling.
Frequency of use was measured and compared to wattage.
The appliance percent used during time-of-day and day-
of-week was generated from historical data. These features
disaggregated well when the whole-house power reading had
little to no noise. This problem impacts the generality of being
able to use their systems in most homes because home homes
have noisy power signals.

Kolter et al. [7] collected power data at 1Hz sampling as
well. They tracked the duration at different levels of power
demand which they called snippets. These snippets where then
used to train their load disaggregation system.

Parson et al. [8] collected power data at one minute intervals
(16mHz sampling). Sampling at such a low resolution was
problematic because power spike readings from appliance
usage where missed.

B. Training Strategy

Due to the Dynamic and Changing Usage problem we
identified, researchers use training strategies that train the load
disaggregation system to identify loads specific to that house.
Current load disaggregation systems cannot generalize across
different houses. So with each new house a phase of individual



appliance metering is needed to generate the histograms and
finite state machines needed for learning.

Zeifman et al. [10], [11] used the REDD dataset [6] to
develop a histogram of appliance-on durations, negative power
changes, and power-on spikes. They chose nine simple on/off
appliances that were individually metered from one home for
26 days. There were two problems: (1) the whole-house power
readings were measured in apparent power (VA) while the
appliances were measured in real power (W), and (2) one of
the appliances used was a dishwasher that had 2 power states
which they tried to convert to one simple on/off appliance.

Kim et al. [4] gathered 6 months of data from 7 homes
which they used as a dataset to develop histograms of on/off
durations. Individual appliances were metered from each
home. Appliances that were finite state where decomposed
into multiple simple on/off appliances. This decomposition
increases the number of appliances being tracked. They found
that as they increase the number of appliance to disaggregate
the accuracy of their system was severely impacted by about
20%.

Kolter et al. [7] used their REDD dataset [6] to analyze the
power snippets and calculate the probability that one snippet
caused the likelihood of another snippet. They did this for
seven appliances that they used for testing. They found that
if the on off events for the appliances where short enough
they where able to snippets of that just contained a single
appliances data. We find this claim interesting, because of
the two problems we identified: Multiple, Simultaneous Load
Events and Noisy Power Signals. Both problems mean there
would be a lot of data that would not be of use and would
need to be discarded.

Parson et al. [8] used the REDD dataset [6] for initial
accuracy testing. Later they used six live homes for testing. A
general appliance finite state machine was developed using a
probabilistic graphical model based on the metered appliance
data. They were able to tune a general appliance finite state
machine to a specific appliance make and model across the
six different homes they tested.

C. Clustering

Clustering involves the grouping of loads based on different
dimensional measurements (e.g. time vs power). Based on the
training strategy, clustering results in a set of probabilities that
is then used by the learning algorithm.

Zeifman et al. [10], [11] clustered negative power changes
by ∆P and the hourly presents/absence of the appliance
running. They clustered positive power changes by ∆P and
time duration of the power spike. An ISODATA algorithm [20]
was used to create the clusters. If clusters were too close they
were merged, and if a cluster contained multiple appliances it
was split.

Kim et al. [4] chose not to perform clustering but to
calculate the distribution shape of each appliance. They used
a gamma distribution of each appliance-on duration. They
also calculated the conditional probability of each pair of
appliances.

Kolter et al. [7] used the snippet probabilities to clus-
ter loads together using k-Nearest Neighbour and spectral
clustering algorithms. They were able to distinguish nine
separate signatures that occurred frequently. Each signature
corresponded to a different appliance.

Parson et al. [8] did not use clustering, instead relying on
the generalized probabilistic appliance finite state machines
(FSM) they developed. These generalized FSMs where build
from prior knowledge of how a type of appliance operated.
They were then tuned to specific models in the house by using
an EM algorithm on multiple small chunks of whole-house
power data.

D. Learning Algorithms
Learning algorithms use the set of probabilities created

during clustering to determine what loads are running and in
what state, based on the current and past whole-house power
reading.

Zeifman et al. [10], [11] ordered the lists of appliances by
power demand and used a modified version of the Viterbi
algorithm called VAST [21]. VAST considered the state of the
each appliance with its 2 neighbouring appliances. Zeifman et
al. used this modification to reduce the computational cost that
would have been produced by using a large state change table.
The reduction in computational cost outweighed the reduction
in appliance detection accuracy. They achieved accuracies with
mixed results from one appliance at 41% to two appliances at
100% of the nine appliances tested.

Kim et al. [4] used four variants of the factorial Hidden
Markov Model (FHMM) [?], [22] which fed into each other.
The distribution shape and additional time features where
used as inputs. Due to the computational complexity of their
approach, it is doubtful that the system could scale down to
use an embedded processor. They were achieving accuracies of
between 69%–98%, but as appliances were added accuracies
decreased.

Kolter et al. [7] used a combination of two FHMM variants,
additive FHMM and difference FHMM. Additive FHMM was
used for finding the aggregate observed load. Difference
FHMM was used to find the difference in the load from
the previous time step and the current time step. Using the
difference, they performed state estimation using an Additive
Fractional Approximate MAP algorithm (which they devel-
oped). Their algorithm had issues disaggregating load with
similar power demand. They achieved an average accuracy of
about 71% based on the classification of seven appliances.

Parson et al. [8] used the difference FHMM as well. Generic
appliance finite state machines and an extended Viterbi algo-
rithm [21] were used for hidden state estimation. Viterbi was
extended to ignore small joint probability observations and
all sequences with joint probability were evaluated. The mean
normalized error results they reported were very mixed, from
21% to 3469%.

IV. BROADER ISSUES

Given our survey of the recent literature on load disag-
gregation using smart meters in the previous section, and



our identification of specific problems or limitations with
the current approaches, we can now discuss broader issues
concerning load disaggregation.

A. Energy Conservation Benefits

The bottom of Figure 3 shows activities that benefit from
a load disaggregation system that is accurate and timely.
Once appliances are disaggregated we can begin to group the
appliances together by different attributes (e.g. location in a
home, likelihood of being on/off together). These groupings
can further be extrapolated into systems that can infer oc-
cupant activity as well as construct models of the home to
understand occupant-home interaction. Adding a system that
can perform a what-if analysis can lead to the ultimate goal
of developing a system that can recommend strategies and
activities to homeowners and occupants on how to reduce their
energy consumption. These recommendations would be unique
to each home, based on that home’s usage.

B. Deferrable & Non-deferrable Actions

We believe that load disaggregation only be highly accu-
rate to identify appliances that have deferrable actions (e.g.
clothes washer and dryer, HVAC, dishwasher, kitchen oven).
Such loads are large consumers of power and more easily
identifiable. This means that the high accuracy is achievable.
A deferrable action is an action that an occupant does not
necessarily need to perform now. For example, having the
dishwasher run during periods of the day with the charge per
kWh is less – resulting in a reduced power bill. Delaying
actions that are non-deferrable would cause an inconvenience
and discomfort to occupants – as is most often the case with
home automation systems [23].

C. Adding Smart Plugs to the Mix

Do we need to disaggregate everything? Continuously vari-
able loads, small loads, and loads that are continually on are
not suited for disaggregation algorithms [3] and ultimately
cause noise so a different approach is needed. For these
loads we might want to investigate using smart plugs or
plug-level meters to monitor these loads. The readings from
these individual smart plugs can then be used by the c-meter
to remove noise from the whole-house power reading. This
would further increase the accuracy of any load disaggregation
algorithm.

V. CONCLUSIONS

We have presented the need for a power meter that is
more than a smart meter – a cognitive power meter. We
also reviewed the current research on load disaggregation (the
intelligence of the cognitive power meter) and discussed the
short comings of this research. Now it is time to look ahead
and focus on solving these short comings. We are hoping that
other researchers refocus their researcher goals to solve these
issues and provide a load disaggregation systems that meets
the needs of homeowners and occupants – much like what we
are currently doing.
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