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Abstract

Prudent and meaningful performance evaluation of algorithms is essential for the
progression of any research field. In the field of Non-Intrusive Load Monitoring (NILM),
performance evaluation can be conducted on real-world aggregate signals, provided
by smart energy meters or artificial superpositions of individual load signals (i.e,,
denoised aggregates). It has long been suspected that testing on these denoised
aggregates provides better evaluation results mainly due to the fact that the signal is
less complex. Complexity in real-world aggregate signals increases with the number of
unknown/untracked loads. Although this is a known performance reporting problem,
an investigation into the actual performance gap between real and denoised testing is
still pending. In this paper, we examine the performance gap between testing on
real-world and denoised aggregates with the aim of bringing clarity into this matter.
Starting with an assessment of noise levels in datasets, we find significant differences in
test cases. We give broad insights into our evaluation setup comprising three load
disaggregation algorithms, two of them relying on neural network architectures. The
results presented in this paper, based on studies covering three scenarios with
ascending noise levels, show a strong tendency towards load disaggregation
algorithms providing significantly better performance on denoised aggregate signals.
A closer look at the outcome of our studies reveals that all appliance types could be
subject to this phenomenon. We conclude the paper by discussing aspects that could
be causing these considerable gaps between real and denoised testing in NILM.

Keywords: Load disaggregation, Non-intrusive load monitoring, Denoised testing,
Performance evaluation, Energy datasets

Introduction

Effective energy management in smart grids requires a fair amount of monitoring and
controlling of electrical load to achieve optimal energy utilization and, ultimately, reduce
energy consumption (Gopinath et al. 2020). With regard to individual buildings, load
monitoring can be implemented in an intrusive or non-intrusive fashion. The latter
is often referred to as Non-Intrusive Load Monitoring (NILM) or load disaggregation.
NILM, dating back to the seminal work presented in Hart (1992), comprises a set of
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Fig. 1 Real and denoised aggregate in the case of UK-DALE house 5

techniques to identify active electrical appliance signals from the aggregate load signal
reported by a smart meter (Salem et al. 2020).

Performance evaluation of NILM algorithms can be carried out in a noised or denoised
manner, where the difference lies in the aggregate signal considered as input. Whereas
noised scenarios employ signals (i.e. time series) obtained from smart meters, denoised
testing scenarios consider superpositions of individual appliance signals (i.e., denoised
aggregates). Figures 1 and 2 illustrate such real and denoised signals for two households
found in NILM datasets. Depending on how many appliance signals are considered when
deriving a denoised aggregate, there can be test scenarios in which the denoised aggregate
differs considerably from its real-world counterpart, as shown in Fig. 2.

While a large proportion of contributions proposed for NILM is being evaluated follow-
ing noised testing scenarios, exceptions to this unwritten rule can be observed (Wittmann
et al. 2018). The problem with this matter lies in the complexity of the test setup, as
denoised aggregates are suspected to pose simpler disaggregation problems (Makonin
and Popowich 2015). Consequently, our hypothesis claims that the same disaggrega-
tion algorithm applied to the denoised signal version of a real-world aggregate signal
results in considerably better performance, thus communicating a distorted picture of the
capabilities of the presented algorithm.

This paper presents a study focusing on the difference between denoised and real-world
signal testing scenarios in the context of performance evaluation in NILM. We consider
data of 15 appliances extracted from three datasets. Each dataset reports an aggregate
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Fig. 2 Real and denoised aggregate in the case of REFIT house 2
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signal with additional residual noise. For testing, we select households with different levels
of residual noise. We incorporate one basic and two load disaggregation approaches based
on neural networks to obtain a broad understanding of whether or not noise levels of
aggregate power signals impact energy estimation performance. Finally, we discuss how
the disaggregation performance is affected by signal noise levels with regard to different
appliance types.

Related work

Despite the possibly far-reaching implications of this aspect for NILM, relatively little
is understood about the actual performance gap between real and denoised testing. In
Makonin and Popowich (2015), the hypothesis of denoised testing resulting in better
performance was expressed first. Further, the authors introduce a measure to assess the
noise level of aggregate signals. This measure has found application in a limited num-
ber of studies, in which the noise level was reported alongside the performance of load
disaggregation algorithms on real-world aggregates (Makonin et al. 2015; Zhao et al.
2018). However, no comparison to the denoised testing case has been conducted. In Kle-
menjak et al. (2020), the noise levels of several NILM datasets were determined. The
authors report basic parameters of several NILM datasets and find that noise levels in real
aggregate signals vary significantly among observed datasets.

Few attempts have been made to evaluate NILM algorithms on both, real and denoised
aggregates, such as presented for the AFAMAP approach in Bonfigli et al. (2017). In
subsequent work (Bonfigli et al. 2018), an improved version of denoising autoencoders
for NILM has been proposed by means of comparison studies to the state of the art at
that time. Although the authors have not investigated the performance gap between real
and denoised, a tendency can be derived for this particular case in both contributions,
confirming the motivation for the studies presented in this paper.

Assessing signal noise levels

NILM has been approached in various ways that can be categorized into event detec-
tion and energy estimation approaches (Pereira and Nunes 2018). In the following, we
focus on the energy estimation viewpoint as the precursor of the event detection stage
in the disaggregation process. We define NILM as the problem of generating estimates
[fcgl), . ,&EM)] of the actual power consumption [xil), e ,xEM)] of M electrical appli-
ances at time ¢ given only the aggregated power consumption y;, where the aggregate

power signal y; consists of
M -
ye=Yy %) +m (1)
i=1

that is M appliance-level signals x;i) and a residual term 7;. The residual term com-
prises (measurement) noise, unmetered electrical load, and unexpected or unaccounted
anomalies (Makonin and Popowich 2015). To quantify the share of the residual term in
an aggregate signal, the noise-aggregate ratio NAR, defined as:

T T M (D)
D1 Mt _ Dot lye =20 x|
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was introduced in Makonin and Popowich (2015). This ratio can be computed for any
type of power signal, provided that readings of the aggregate and individual appliances
are available. A NAR of 0.15 indicates that 15% of the observed power signal can be
attributed to the residual term. Hence, the ratio indicates to what degree information on
the aggregate’s components is available.

To get an impression of NAR levels to be expected in real-world settings, we com-
pute this ratio for household measurements contained in the energy datasets AMPds2
(Makonin et al. 2016), COMBED (Batra et al. 2014a), ECO (Beckel et al. 2014), iAWE
(Batra et al. 2013), REFIT (Murray et al. 2017), and UK-DALE (Kelly and Knottenbelt
2015a). As intended by the authors of (Makonin and Popowich 2015), we consider all sub-
meter signals recorded during the measurement campaign to compute the NAR. These
datasets were selected because of their compatibility to NILMTK, a toolkit that enables
reproducible NILM experiments (Batra et al. 2014b; Batra et al. 2019). We excluded from
consideration the dataset BLUED (Anderson et al. 2012) due to the lack of sub-metered
power data, Tracebase (Reinhardt et al. 2012) and GREEND (Monacchi et al. 2014) due to
the lack of household aggregate power data. We summarize the derived values in Table 1
in conjunction with further stats on the measurement campaign such as duration or
number of submeters.

Generally speaking, measurement campaigns strive to record the energy consumption
and other parameters of interest in households or industrial facilities over a certain time
period. Though sharing this common aim, considerable differences can be observed in
the way past campaigns have been conducted. As Table 1 shows, durations range from a
couple of days to several years of data, which impacts the amount of appliance activations
and events found in the final dataset. Further, we identify considerable variations with
regard to AC power types as well as the number of submeters installed during campaigns.

Table 1 Noise levels in NILM datasets

Dataset House Duration Meters Power Types NAR
[days] [%]
AMPds2 1 730 20 P.QS P.Q5S 17.8
COMBED 1 28 13 p p 344
ECO 1 236 7 P.Q p 67.0
ECO 2 245 12 P,.Q P 59
ECO 3 57 7 P.Q p 97.0
ECO 4 21 8 P.Q P 705
ECO 5 219 8 P.Q P 84.7
ECO 6 124 7 P.Q p 66.0
IAWE 1 60 10 P.QS P.Q5S 50.0
REFIT 1 639 9 p p 64.5
REFIT 2 617 9 p p 65.1
REFIT 3 614 9 p p 555
REFIT 4 634 9 p p 525
REFIT 5 648 9 p P 52.3
UK-DALE 1 658 52 P,S P,S 333
UK-DALE 2 110 18 P,S p 41.2
UK-DALE 3 35 4 S p -
UK-DALE 4 114 5 S p -
UK-DALE 5 107 24 P,S p 275
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Table 2 Details on intervals and dataset splitting

Dataset House Interval Train Test
[days] [days]
ECO 2 2012-06-01 to 2013-01-31 207 37
REFIT 2 2014-03-01 t0 2014-12-01 234 41
UK-DALE 5 2014-07-25t0 2014-10-15 70 12

It should be pointed out that there seems to be a lack of consistency in the sense that
not only measurement setups differ between two datasets but also within some of the
campaigns considered by our comparison (e.g., UC-DALE).

As concerns the noise aggregate ratio (NAR), we observe considerable variations across
datasets and households. Interestingly, the NAR ranges between a few percent, as it is
the case for household 2 in the ECO dataset, and excessive 84.7% in household 5 of same
dataset. Further, there are indications that the number of submeters used in the course
of dataset collection can but do not necessarily have an impact on the noise level of the
household’s aggregate signal since it is decisive what kind of appliances are left out during
a measurement campaign (low-power appliances vs. big consumers). As concerns house
1 to house 5 in REFIT, we consistently observe moderate to high noise levels, which may
be the result of the low number of submeters incorporated in the measurement campaign.
On the other hand, it should be noted that the measurement campaign conducted to
obtain REFIT shows remarkable consistency in the sense that the exact same number of
submeters has been applied to every single household in the study and, more importantly,
the same AC power type has been considered at aggregate and appliance level at every
site. In contrast to that, Table 1 reveals that in the case of house 3 and 4 in UK-DALE,
apparent power was recorded on aggregate level, whereas active power was considered
on appliance level only. As our definition of NAR demands for the same AC power type
on aggregate and submeter level, no such ratio could be computed in those cases. The
same applies to all sites of the REDD (Kolter and Johnson 2011) dataset, according to the
NILMTK dataset converter!. For this reason, REDD has not been considered in this study.

Evaluation setup

To gain a comprehensive understanding of the impact of noise on the disaggregation per-
formance of algorithms, we selected three households with ascending levels of residual
noise: household 2 of the ECO dataset (Beckel et al. 2014) with a NAR of 5.9%, house-
hold 5 of the UK-DALE dataset (Kelly and Knottenbelt 2015a) with a NAR 27.5%, and
household 2 of the REFIT dataset (Murray et al. 2017) with a NAR of 65.1%. This way, we
incorporate one instance each for disaggregation problems with low, moderate, and high
noise levels. We selected five electrical appliances for every household considering a wide
range of appliance types. We extracted 244 days for ECO, 82 days for UK-DALE and 275
days for REFIT while applying a sampling interval of 10s. Table 2 provides further infor-
mation on training and test sets. The amount of data used per household was governed
by availability in the case of ECO and UK-DALE, as can be learned from Table 1. We split
datasets into training set, validation set, and test set. This splitting was applied to all three
households. We considered the smart meter signal as present in datasets and obtained

1 https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset_converters/redd/metadata
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the denoised version of the aggregate by superposition of the individual appliance signals
following:

M P
ye=> a (3)
i=1

It should be noted that while deriving the denoised aggregate of a household, we consid-
ered all appliance signals available in the respective dataset. For instance, the denoised
aggregate in the case of UK-DALE’s house 5 is found by superposition of 24 appliance
signals, as can be learned from Table 1.

For experimental evaluations, we utilize the latest version of NILMTK. The toolkit
integrates several basic benchmark algorithms as well as load disaggregation algorithms
based on Deep Neural Networks (DNN). In the course of experiments, we consider the
traditional CO approach and two approaches based on DNNs:

e The Combinatorial Optimization (CO) algorithm, introduced in Hart (1992), has
been used repeatedly in literature to serve as baseline (Batra et al. 2019). The CO
algorithm estimates the power demand of appliances and their operational mode.
Similar to the Knapsack problem (Rodriguez-Silva and Makonin 2019), estimation is
performed by finding the combination of concurrently active appliances that
minimizes the difference between aggregate signal and the sum of power demands.

e Recurrent Neural Networks are a subclass of neural networks that have been
developed to process time series and related sequential data (Di Pietro and Hager
2019). First proposed for NILM in Kelly and Knottenbelt (2015b), we employ the
implementation presented in Krystalakos et al. (2018), which incorporates Long
Short-Term Memory (LSTM) cells. Provided a sequence of aggregate readings as
input, the RNN estimates the power consumption of the electrical appliance it was
trained to detect for each newly observed input sample.

e The Sequence-to-point (S2P) technique, relying on convolutional neural networks,
follows a sliding window approach in which the network predicts the midpoint
element of an output time window based on an input sequence consisting of
aggregate power readings (Zhang et al. 2018). The basic idea behind this method is to
implement a non-linear regression between input window and midpoint element,
which has been applied successfully for speech and image processing (van den Oord
et al. 2016). In a recent benchmarking study of NILM approaches, S2P was observed
to be amongst the most advanced disaggregation techniques at that time (Reinhardt
and Klemenjak 2020).

While the CO approach does not need to be parametrized, we set the number of
training epochs to 25 during training of neural networks. Further, we employ an input
sequence length of 49 for LSTM inspired by Krystalakos et al. (2018) and 99 for S2P as
suggested in Batra et al. (2019).

In this study, we utilize two error metrics to assess the performance of load disaggrega-
tion algorithms. The first is a well-known, common metric used in signal processing, the
Mean Absolute Error (MAE), defined as:

T
| " .
MAE® = T > 1« (4)
t=1
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where x; is the actual power consumption, x; the estimated power consumption, and T
represents the number of samples. The best possible value is zero and, as we estimate the
power consumption of appliances, it is measured in Watts. As second metric, we incor-
porate a metric defined by NILM scholars in Kolter and Jaakkola (2012), the Normalized
Disaggregation Error (NDE), defined as:

. AN\ 2
T ~ (D) (O]
S (3 - «)
N 2
T (U]
> ()

In contrast to the MAE, the NDE represents a dimensionless metric and, more impor-

NDE® = (5)

tantly, the NDE belongs to the class of normalized metrics. This allows for fair compar-

isons of disaggregation performance between appliance types (Klemenjak et al. 2020).

Results

We summarize the outcome of our investigations in Table 3 for the MAE and Table 4 with
regard to the NDE. For several appliances per household, we compare the disaggregation
performance of CO, LSTM, and S2P when applied to the real-world aggregate signal,
denoted as Real, and the denoised aggregate signal Den, respectively.

In virtually all cases, we observe a strong tendency towards disaggregation algorithms
providing better performance on denoised aggregate signals. In the context of error met-
rics such as MAE and NDE this means that the error observed on the real aggregate is
larger than the error on the denoised aggregate. This holds true for almost all households
and appliances considered, though some exceptions were identified: we spot a few cases
in Table 3, namely the fridge and kettle in ECO as well as the dishwasher in UK-DALE
showing the opposite trend for the CO algorithm. Same applies to all fridges with regard
to the NDE metric, as Table 4 reports. It should be pointed out that in those cases, the
performance of CO on the real-world and denoised aggregate signal shows a consider-
able gap when compared to LSTM and S2P. Therefore and because of CO being a trivial
benchmarking algorithm, we claim that these cases can be neglected.

Table 3 Mean absolute error (MAE) in Watts for real and denoised testing

co LSTM S2p
Appliance Real Den Real Den Real Den
ECO(2) audio system 377 323 6.4 56 6.8 59
NAR =5.9% dishwasher 43.1 40.2 7.5 39 58 36
fridge 418 49.8 9.5 11.7 7.5 8.5
kettle 17.3 42.7 4.2 25 32 13
lamp 62.2 47.1 289 164 284 16.5
UK-DALE (5) dishwasher 876 95.1 12.2 36 83 4.1
NAR = 27.5% electric oven 50.7 39.2 20.7 9.0 174 9.1
electric stove 1313 40.1 7.3 6.1 6.4 44
fridge 161.4 1414 257 21.1 20.6 16.4
washing machine 74.8 514 28.6 14.8 17.3 137
REFIT (2) dishwasher 96.0 413 314 9.0 253 8.5
NAR = 65.1% fridge 57.8 228 23.0 104 239 124
kettle 79.1 9.2 9.8 33 9.7 32
microwave 70.8 46.6 2.7 1.5 2.8 1.1

washing machine 101.5 41.0 216 126 241 1.3
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Table 4 Normalised disaggregation error (NDE) for real and denoised testing

co LSTM S2P
Appliance Real Den Real Den Real Den
ECO (2) audio system 1.83 1.74 0.48 042 0.47 0.44
NAR =5.9% dishwasher 0.96 0.78 0.44 0.26 0.34 022
fridge 1.8 2.07 045 0.5 0.38 0.36
kettle 13 1.66 051 034 048 0.22
lamp 127 118 0.74 0.5 0.74 0.52
UK-DALE (5) dishwasher 1.44 1.55 0.76 0.39 0.61 0.34
NAR = 27.5% electric oven 151 0.98 0.66 0.38 053 0.33
electric stove 29 1.82 0.66 0.58 0.6 042
fridge 3.16 324 0.64 0.6 0.55 046
washing machine 147 1.16 0.63 0.35 042 0.32
REFIT (2) dishwasher 1.06 0.74 0.56 0.19 0.48 0.18
NAR = 65.1% fridge 14 1.81 0.7 048 0.68 048
kettle 1.33 043 048 0.2 0.46 02
microwave 4.54 3.84 0.85 0.45 0.84 0.36
washing machine 2.04 142 0.82 0.5 0.75 045

As concerns LSTM and S2P, we identify a single contradictory observation, namely in
the case of the fridge in ECO’s household 2. In this particular case, we observed that
testing on the real-world aggregate signal results in marginally better performance. One
explanation for this could be the extremely low NAR in this scenario, 5.9%, and the
fridge belonging to the category of appliances with a recurrent pattern (Reinhardt and
Klemenjak 2020).

Having identified a clear tendency towards CO, LSTM, and S2P providing significantly
better performance in the denoised signal case i.e. lower MAE and NDE, we draw our
attention to the open question whether or not there exists a link between noise level and
the magnitude of the performance gap between Real and Den. To investigate further in
this, we define the performance gap to be the distance between the error on the real
aggregate signal and the error observed signal when testing on the denoised aggregate

signal:
AMAE = MAE s — MAEgenoised (6)
ANDE = NDEes] — NDEgenoised )

We derive AMAE for the cases presented in Table 3 and illustrate an excerpt of found
gaps in Fig. 3 for ECO, Fig. 4 for UK-DALE, and Fig. 5 for REFIT, where the focus of this
discussion lies on the two approaches based on neural networks.

We observe clear gaps for both NILM approaches based on neural nets, LSTM and S2P.
The illustrations show that neither approach seems to be resilient to noise. This is partic-
ularly interesting as approaches relying on LSTM cells as well as sequence-to-sequence
learning have received increased interest lately (Reinhardt and Klemenjak 2020; Kaselimi
et al. 2019; Kaselimi et al. 2020; Mauch and Yang 2015; Wang et al. 2019). Further, we
identify higher performance gaps in test cases on REFIT’s house 2 compared to house 5
of UK-DALE in this study. This is particularly apparent when comparing the performance
gap for the dishwasher across households, where we measure a AMAE many times higher
in case of REFIT. Also, we observe performance gaps twice as high for the fridge on REFIT
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Fig. 6 Performance gap with regard to NDE for UK-DALE house 5

compared to UK-DALE. The only exception to this trend represents the case of LSTM for
washing machines, where the performance gap of the LSTM network is smaller on REFIT
than on UK-DALE.

Nevertheless, it should be stressed that comparisons based on not-normalized met-
rics can, but not have to be, misleading in some cases since two appliances of the
same kind (i.e., two dishwashers) may differ significantly in terms of power consump-
tion. Furthermore, metrics are designed to measure specific aspects of algorithms and
hence, considering several metrics during performance evaluation results in a broader
understanding of the capabilities of algorithms.

For these reasons, we also derived performance gaps with regard to NDE, ANDE, for
the test cases presented in Table 4 and illustrate derived gaps in Fig. 6 for UK-DALE and
Fig. 7 for REFIT.

In the case of fridges, we observe substantially lower performance gaps on UK-DALE
for both networks. We suspect that is a result of the comparably high amount of noise
in REFIT 2, disaggregating the real-world aggregate signal represents a bigger challenge
than in the case of the denoised counterpart, especially when estimating the power
consumption of low-power household appliances such as fridges.

Interestingly, not only we observe considerable performance gaps when estimating the
power consumption of low-power appliances but also for appliances with moderate or
high power consumption such as dishwashers and washing machines, as can be learned
from Figs. 8 and 9. In both cases, UK-DALE and REFIT, we measure the highest ANDE in
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Fig. 7 Performance gap with regard to NDE for REFIT house 2
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the case of the dishwasher. A comparison of performance gaps for dishwashers in Fig. 8
reveals that while we measure similar performance gaps in UK-DALE and REFIT, the
performance gap in the case of ECO is significantly smaller. We hypothesize this is the
result of the marginal noise level measured in house 2 of ECO. More importantly, we
observe that also in cases of marginal noise levels, an apparent difference in terms of
disaggregation error can be observed between real and denoised testing in this example.

A recent benchmarking study involving eight disaggregation algorithms found that S2P
outperformed competing neural network architectures and concluded that S2P ranks
amongst the most promising NILM approaches (Reinhardt and Klemenjak 2020). As
concerns performance of NILM algorithms interpreted as disaggregation error between
estimated power consumption and true power consumption of appliances, we find that
S2P outperforms LSTM in 11 of 15 cases for the MAE metric and in 14 of 15 cases when
the NDE metric is considered. Furthermore, in the vast majority of test runs, the S2P
approach shows lower performance gaps than the network composed of LSTM cells in
the sense of AMAE and ANDE.

Discussion

Insights obtained from testing on three households with considerably different NAR lev-
els reveal that in the majority of test runs, testing on the denoised aggregate signal leads
to substantially lower estimation errors and therefore, higher estimation accuracy. A few
cases showing the contrary trend were observed but can be reasonably explained. As this
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04 /1 s2pP
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Fig. 9 Performance gap with regard to NDE for washing machines
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Fig. 10 An excerpt of estimates provided by S2P for the fridge in REFIT house 2 when applied to the real
aggregate

apparent performance gap can be attributed to a variety of aspects, we suspect two of
them having a decisive impact on this matter:

First, denoised aggregates are obtained by superposition of individual appliance signals.
As such, they contain fewer appliance activations and consumption patterns than aggre-
gates obtained from smart meters, respectively. Particularly when estimating the power
consumption of low-power appliances, such activations have the potential to hinder load
disaggregation algorithms from providing accurate power consumption estimates. Such
cases were repeatedly observed during our studies on REFIT, where a NAR of 65.1% was
measured. As depicted in Figs. 10 and 11, we detected several cases where concurrent
operation of appliances with moderate or high power consumption (i.e. dishwasher, elec-
tric stove, or washing machine) resulted in significant deviations when estimating the
power consumption of the fridge. Not only we observed such cases for the basic bench-
marking algorithm CO but also for the advanced NILM approaches LSTM and S2P, which
leads to the presumption that though having seen remarkable advances in the state of
the art, at least a part of those algorithms may still be prone to noise levels in aggregate
signals.

Second, we observe a substantially higher number of false positive estimates in predic-
tions based on real-world aggregate signals than in estimates generated from denoised
aggregate signals. False positives in this context mean that the NILM algorithms pre-
dicted the appliance to consume energy at times this was not the case. Such false positives
impact the outcome of performance evaluations two-fold, as they increase the disaggre-
gation error and decrease the estimation accuracy of NILM algorithms, respectively. We
observed repeatedly that in the real-world case, the number of false-positive estimates
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Fig. 11 An excerpt of estimates provided by S2P for the fridge in REFIT house 2 when applied to the
denoised aggregate
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is considerably higher than in the denoised case. We presume that those false posi-
tives are the result of algorithms confusing appliances with similar power consumption
levels.

Based on the insights gained in this study, we can, however, not confirm a clear link
between noise level, measured in NAR, and the magnitude of the performance gap
between testing on real and denoised aggregates. We suspect this is due to the fact that
every load disaggregation problem bears individual challenges to load disaggregation
algorithms, making a comparison between moderate and high noise levels cuambersome.
Though such a positive correlation between noise level and the magnitude of the perfor-
mance gap could not be confirmed by our evaluation, we demonstrated that it has to be
expected that testing on denoised aggregates results in lower disaggregation errors in the
majority of test runs. Yet, we would like to stress the need for further investigation into
the complexity of load disaggregation problems.

Conclusions

Motivated by the use of both, real and denoised aggregates in the evaluation of NILM
algorithms in related work, we have investigated the performance gap observed between
artificial sums of individual signals and signals obtained from real power meters. First,
we utilized a noise measure, the noise-aggregate ratio NAR, to determine the noise
level of real-world aggregate signals found in energy datasets. We find that noise lev-
els vary substantially between households. We give insights on the experimental setup
employed in our studies, comprising one basic and two more advanced NILM algo-
rithms applied to data from three households with ascending noise levels. Our results
show that a significant performance gap between the real and the denoised signal test-
ing case can be identified in virtually all evaluation runs, provided a sufficiently high
noise-aggregate ratio. Though some exceptions were observed, those cases can be well
explained. Hence, we claim that testing on denoised aggregate signals can lead to a dis-
torted image of the actual capabilities of load disaggregation algorithms in some cases,
and ideally, its application should be well-considered when developing algorithms for
real-world settings.
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