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ABSTRACT
Understanding appliance power consumption can help occu-
pants optimize their power consumption behaviour. One pop-
ular class of methods for determining appliance power con-
sumption is known as non-intrusive load monitoring (NILM).
This paper shows how to incorporate time-of-day appliance
usage patterns into a recent NILM method, resulting in both
improved accuracy and reduction in computational complex-
ity.

Index Terms— non-intrusive load monitoring (NILM),
time-of-day usage, smart grid, load disaggregation, graph
spectral representation

1. INTRODUCTION

Load monitoring techniques determine the appliances that are
turned ON within a given period of time in a household or
workplace [1]. They play a critical role in a variety of smart
grid applications such as supply and demand side power
control, adaptive billing, and appliance fault identification.
Load monitoring is broadly classified as intrusive or non-
intrusive. Intrusive load monitoring requires the attachment
of individual sensors to each appliance being monitored, thus
resulting in large initial expenses. However, in non-intrusive
load monitoring (NILM), the objective is to determine which
appliances are ON and their respective power consumptions
through a single supply entry point [1], such as a smart meter.
Thus, with its cost effectiveness and application potential for
smart grids, there has been an escalation in the need for ef-
ficient and effective NILM methods for residential appliance
identification [2–7]. Privacy is also an important concern for
NILM. Although not the focus of this paper, these issues have
been addressed in previous work [8].

Even though there are many diverse NILM methods pro-
posed in the literature, most of them estimate the currently
turned ON set of appliances only using electrical measure-
ments such as current and/or voltage [9–12], active power [4–
7, 13, 14], and reactive power [15]. However, certain appli-
ances have a higher chance of being used at certain times of
day. For example, a toaster would often get used in the morn-
ing, and likely never overnight. Very limited attention has
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been paid to utilizing such appliance usage patterns to de-
velop more accurate NILM methods.

In this paper, the recent NILM method from [4] is ex-
tended to utilize time-of-day usage patterns of appliances. We
use graph spectral representation to efficiently estimate joint
time-of-day probabilities for sets of appliances. Incorporating
this information into [4] leads to both improvement in NILM
accuracy as well as reduction in complexity.

2. METHODOLOGY

To simplify algorithm formulation, multi-state appliances are
decomposed into multiple two-state (ON/OFF) appliances.
Hereafter, when we refer to an “appliance,” we mean a two-
state (ON/OFF) appliance, whether it is originally a two-state
appliance, or converted from a multi-state appliance.

2.1. Time-of-Day Usage Patterns

The proposed NILM method uses three types of features:
spectral features, mean power levels, and time-of-day prob-
abilities. The spectral features and mean power levels were
generated using a Karhunen-Loeve Expansion (KLE)-based
method described in [4]. Hence, we focus here on describing
the time-of-day probabilities.

Certain appliances have a higher chance of being used at
certain times of day. To capture such time-of-day usage pat-
terns, we compute a time-of-day ON-probability for a set of
appliances S as follows:

P [IS(t) = 1] =
nS(t)

N
, (1)

where t is a certain time of day, N is the number of days in
the training set, and nS(t) is the number of days in the train-
ing set in which all appliances in S were turned ON at time
t. Here, S could be a single appliance (S = {ai}), a pair
of appliances (S = {ai, aj}), or a larger group of appliances
(S = {ai1 , ai2 , ..., ain}). However, since the total number
of possible sets of appliances is large, we only pre-compute
time-of-day probabilities for individual appliances and pairs
of appliances. For sets of three or more appliances, we intro-
duce an efficient method to estimate the corresponding joint
probabilities in Section 2.2.
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Fig. 1. Examples of time of day probabilities.

Fig. 1 shows time-of-day ON-probability for a desktop
computer and the pair of appliances (LCD television, lamp).
As seen in the figures, the probability of being ON clearly
depends on the time of day. One could also appreciate that as
the daylight time varies through the seasons, the lamp would
be used at different times of day, depending on the season.
This sort of information will be utilized to improve the NILM
method from [4]. Here, we assume that there is a mechanism
to collect a sufficient number of days of individual appliance
power profiles in a given house in order to obtain reasonably
accurate time-of-day usage patterns.

2.2. Appliance State Identification

In the NILM method of [4], the aggregate power signal is
partitioned into non-overlapping windows called observation
windows (OWs). For each OW, five principal components are
extracted using KLE. Algorithm 1 presents the main steps for
a given OW. Up to five iterations are executed, one for each
principal component. In each iteration, two elimination steps
are conducted, where each step removes some of the candi-
date sets of appliances. This is followed by the Maximum a
Posteriori (MAP) estimation of the most likely set of appli-
ances (SMAP) that is turned ON in that OW.

LetZi be the event that the first i principal components are
those observed in the first i iterations in a given OW. The goal
of MAP estimation is to find the most likely set of appliances
S that could have led to such an event. The Bayes’ rule states
that

P [IS(t) = 1|Zi] =
P [Zi|IS(t) = 1] · P [IS(t) = 1]

P [Zi]
. (2)

Here, t refers to the mid-point of the given OW. In [4],
P [Zi|IS(t) = 1] was determined for the non-eliminated
sets in the last elimination step, just before the MAP es-
timation. With SMAP = argmaxP [IS(t) = 1|Zi], if
P [ISMAP(t) = 1|Zi] > 0.99, the execution stops at the i-
th iteration, before reaching the maximum of five iterations.
The value 0.99 is the default threshold for the posterior proba-
bility in [4] and can be changed depending on the application.
We kept the same threshold in this work.

If there are n appliances in a household, there are 2n − 1
sets of appliances to be considered, excluding the empty set.

Algorithm 1 Appliance identification algorithm from [4]
1: Set i = 1
2: Set execution = 1
3: Apply the pre-elimination step to the observation win-

dow;
4: while execution do
5: Take the i-th principal component;
6: Apply the two elimination steps;
7: Conduct MAP estimation, find SMAP;
8: if P [ISMAP(t) = 1|Zi] > 0.99 OR i == 5 then
9: Output: SMAP;

10: Set execution = 0;
11: else
12: i = i+ 1
13: end if
14: end while

Due to the large number of sets, in [4], P [IS(t) = 1] was
assumed to be equally likely for any set S. However, we know
that this is not true in practice. Hence, we extend the method
in [4] by computing the joint probabilities P [IS(t) = 1] with
the help of graph spectral representation.

First, note that in the MAP estimation step, we only
need to consider appliances sets S that have not been elim-
inated prior to the MAP step. Let us denote this set as
F = {S1, S2, ..., SnS

}. In our experiments, nS is usually
less than 3% of the total number of possible sets.

The term P [Zi] in the denominator in (2) is common to all
S ∈ F , so removing it won’t affect the maximization. Finally,
the MAP problem becomes finding the set S that maximizes

P [IS(t) = 1|Zi] = P [Zi|IS(t) = 1] · P [IS(t) = 1]. (3)

The term P [Zi|IS(t) = 1] is computed in the last elimination
step before the MAP estimation, as in [4].

Finally, we compute quantities dF (S; t) that are (approxi-
mately) proportional to joint probabilities P [IS(t) = 1]. Due
to this proportionality, P [IS(t) = 1] and dF (S; t) are equiv-
alent for the purpose of choosing a set that maximizes (3).
The quantities dF (S; t) are computed based only on time-of-
day probabilities for single appliances and pairs of appliances
(Section 2.1), using graph spectral representation. This way,
only single and pairwise time-of-day probabilities (P [IS(t) =
1] for S = {ai} and S = {ai, aj}) need to be stored, and
dF (S; t) can be computed on the fly for any S.

To do this, we construct a graph of appliances and choose
“distances” between pairs of appliances F as functions of
their joint time-of-day probabilities. Specifically, for appli-
ances ai and aj , we set a distance matrix D

D[i, j] = D[j, i] = 1− P [I{ai,aj}(t) = 1], (4)

so that large joint time-of-day probability means small dis-
tance. If there are any singleton sets (S = {ak}) among the
feasible sets in F , then for each such appliance set we include
a “dummy” appliance ak′ in addition to appliance ak with the
following distances:



Fig. 2. Example of an appliance graph.

D[k′, j] = D[j, k′] =

{
1− P [I{ak,aj}(t) = 1], if j 6= k

1− P [I{ak}(t) = 1], if j = k

(5)
The affinity matrix A is obtained as

A[i, j] = exp

{
−D[i, j]

2σ2

}
, (6)

where σ is set to the standard deviation of the values in D, as
in [16]. An example of an appliance graph is shown in Fig. 2,
with affinities between appliances as edge weights. Next, the
graph Laplacian matrix is computed as [17]:

L = W−1/2AW−1/2, (7)

where W is a diagonal matrix whose entries are summa-
tions of the corresponding columns of A. Then, eigenvectors
v1,v2, ...,vm corresponding to the m largest eigenvalues of
L are used to construct a matrix X ∈ Rn×m, as X[:, i] = vi.
Finally, the normalized i-th row of X, X[i, :], represents ap-
pliance ai as a vector in the Rm space [16, 17]. This is called
spectral representation of the appliance graph.

The quantities dF (S; t) are computed based on Euclidean
distances of vectors X[i, :]. Specifically, letNj be the number
of appliances in set Sj ∈ F and cj be the centroid of the
vectors representing those appliances:

cj =
1

Nj

∑
ai∈Sj

X[i, :]. (8)

Then the average Euclidean distance AEDj of the vectors
associated with Sj is

AEDj =
1

Nj

∑
ai∈Sj

‖X[i, :]− cj‖2. (9)

Finally, for each Sj ∈ F , the quantity dF (Sj ; t) is computed
as the normalized inverse AEDj :

dF (Sj ; t) =

1
AEDj∑nS

k=1
1

AEDk

. (10)

These quantities are used in place of P [IS(t) = 1] in (3)
for MAP estimation. Table 1 shows the feasible set F at two
time instants t1 and t2 along with true probabilities P [IS(t) =
1] (computed from ground truth data) and quantities dF (S; t)
computed using the above approach. The data comes from
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Fig. 3. Convergence speed improvement.

the tracebase dataset [18]. As seen in the last column of the
table, dF (S; t) is approximately proportional to P [IS(t) = 1]
at each time instant, albeit with different constants of propor-
tionality at different times. This makes dF (S; t) a good proxy
for P [IS(t) = 1] when maximizing (3). Then after finding the
turned ON set of appliance at time t, the mean power level of
each appliance in this set is used as its disaggregated power
level at time t.

3. EXPERIMENTS

Two case studies are presented to demonstrate the effective-
ness of the proposed NILM method. The accuracy of appli-
ance state identification is evaluated using the well known
F-score, as in [20], and the “Total Power Correctly Assigned
(Acc)” metric [20] is used to evaluate the performance of
power disaggregation. Further, in order to examine the appli-
ance identification speed, the average execution time (denoted
as AET) per OW is used (as described in [4]).

In the first case study, all six houses from the REDD
dataset [21] and one house from the RAE dataset [22]
were used. The REDD dataset consists of whole-home and
circuit/appliance-specific active power measurements for six
US houses over several months. All power measurements are
at 3-second intervals. The first 26 days of data were used for
the training phase, and the next 30 days were used to test the
proposed method. The RAE dataset consists of whole-home
and circuit/appliance-specific active power measurements for
one Canadian house over 72 days. All power measurements
are at 1-second intervals. The first 25 days of data were used
for the training phase, and the next 38 days were used to test
the proposed method.

Table 2 shows the average F-score, Acc and AET over all
houses in the REDD and RAE datasets for [4] and the pro-
posed method. The average improvements in the F-score and
Acc are about 3.6% and 3.7%, respectively. This does not
seem like much, but it is significant considering that [4] is al-
ready fairly accurate to start with (over 90%), so there is not
much room to improve. The greatest benefit from the pro-
posed method comes in reducing AET, which is decreased by
over 40%, on average. Hence, incorporating joint statistics
into appliance state identification, as proposed in Section 2.2,
offers a significant speed up in convergence of the identifica-
tion algorithm.

In order to further demonstrate the speed up, Fig. 3 shows
the percentage of OWs in REDD House 1 where appliance



Table 1. True P [ISj (t) = 1] vs. dF (Sj ; t)

Time t Set F P [ISj
(t) = 1] dF (Sj ; t)

P [ISj
(t)=1]

dF (Sj ;t)]

t1

S1 = {water kettle} 0.383 0.371 1.032
S2 = {toaster, iron} 0.471 0.454 1.037
S3 = {iron, lamp, projector} 0.179 0.173 1.035

t2
S1 = {cooking stove} 0.732 0.587 1.245
S2 = {toaster, lamp, desktop} 0.511 0.413 1.240
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Fig. 4. Appliance identification results for the second case study using the AMPds2 dataset [19].

Table 2. Appliance identification results in the first case study
using the REDD dataset [21] and REA dataset [22].

House
Name

F-Score (%) Acc (%) AET (ms)
[4] Prop. [4] Prop. [4] Prop.

redd1 91.1 93.3 90.4 94.9 21.8 11.7
redd2 91.4 94.1 91.2 93.1 17.9 9.8
redd3 86.2 90.7 84.3 88.2 12.6 6.8
redd4 86.8 88.1 87.4 90.5 17.1 7.8
redd5 85.5 87.9 86.2 88.7 17.8 10.3
redd6 88.1 90.4 85.1 89.2 16.4 10.9
REA 86.8 91.3 87.9 90.5 19.8 11.4

identification converged in a given iteration. According to
Fig. 3, the method in [4] had to execute 4 or 5 iterations in
nearly 43% of OWs, while the proposed method converged in
3 iterations or less in 96% of OWs.

In the second case study, we evaluate the appliance state
identification on the AMPds2 dataset [19]. This dataset con-
tains whole-house and 21 circuit/appliance-specific active
power power consumptions of a house in Canada over two
years (from April 2012 to March 2014). All power mea-
surements are at 1-minute intervals. We use the first year of
appliance data for training and the second year of aggregated
data for testing. Using the first year of data, we can generate
time-of-day usage patterns over the whole year. We call these
context-free patterns. In addition, since a full year of data is
available for both training and testing, we also experimented
with seasonal context-based patterns for four seasons (winter,
spring, summer, and fall), where we use the resulting patterns
in their corresponding seasonal context.

The average F-score, Acc and the AET for appliance state
identification in each season from April 2013 to March 2014
are presented in Figure 4(a), (b) and (c), respectively. Here,

again, we compare the F-score, Acc and AET against the
method from [4]. For the proposed method, both the context-
free and the seasonal context-based results are shown. As
seen in the figures, the proposed context-free appliance state
identification improves the F-score and Acc slightly over [4],
but also offers significant reduction in AET. The seasonal
context-based appliance state identification offers further im-
provement in the F-score and Acc and further reduction in
AET, indicating that seasonal appliance usage patterns can be
a useful piece of information for appliance state identification.

4. CONCLUSIONS
A improved NILM method was presented by utilizing time-
of-day usage patterns of appliances. The appliance state iden-
tification make use of appliance graphs that enable efficient
computation of time-of-day joint probabilities. This helps im-
prove both the accuracy and speed of appliance state identifi-
cation. Three publicly available datasets (REDD, RAE, AM-
Pds2) were used to test the improved method. The results
show the higher appliance identification accuracy and faster
convergence of the algorithm. The proposed framework also
allows for context-based appliance state identification and one
such context, the current season, was examined. The results
show that seasonal context helps further improve the accuracy
and speed of appliance state identification.

In this paper, we used a considerable number of days (25
days for case study 1 and 365 days for case study 2) of indi-
vidual appliance power profiles in a given house in order to
obtain the corresponding time-of-day usage patterns. How-
ever, collecting this much data for the training phase is not
practical in terms of hardware installation and the concerns of
occupants. Therefore, in the future, we will investigate other
methods to obtain time-of-day usage patterns with less train-
ing.
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