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1.0 INTRODUCTION 

This report presents the progress to date by MIT on the Non­

intrusive Appliance Load Data Acquisition Method (EPRI Project# RP-

2568-2). The goal of this project is to develop the algorithms 

necessary for the successful development of a nonintrusive residential 

load-monitoring device. This device is to be a low-cost stand-alone 

microprocessor-based instrument capable of determining the energy 

usage and operating characteristics of the individual major appliances 

in a residence, based only on the voltage and current measurements 

available at the utility kWh meter socket. After the device is 

installed in a residence; it will learn the nature of the appliances 

therein and gather statistics for load-research purposes on the 

individual appliances. 

The most crucial part of the development of an algorithm capable 

of breaking down the total residential load into its individual 

appliance 

Appliance 

appliances 

components is the determination of appliance 

signatures are defined to be characteristics of 

which can be observed in the aggregate load. 

signatures. 

individual 

For the 

success of this project, it is necessary that suitable signatures be 

determined which can resolve different appliances as finely as 

possible, and which are consistent and stable under different 

appliance operating conditions. The signatures must also be of such a 

nature that they can be effectively measured, or calculated from 

measurements in real time by low-cost sensors and microprocessors. 

Signatures, whatever they may ultimately consist of, can be organized 

into a vector space in which the components are separably measurable 

independent parameters of the appliance operation (e.g., real power, 

reactive power, harmonic content). The vectorial nature of signatures 

is explored further in Section 3.1. 

Given a space of signatures, the yet-to-be-developed algorithm 

will observe the aggregate voltage and current to track the operation 

of individual appliances and gather statistics {such as kWh demand vs. 

time of day) to be transmitted via telephone or stored on physical 
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media for load researchers. To do this it must first learn what 

appliances are in the house, identifying them by signature. Then it 

can proceed to recognize successive occasions of the same appliance, 

tabulating the statistics of its operation. Eventually it should be 

able to identify the appliances, to the maximum extent possible, by 

their common names (e.g., "Refrigerator"). 

The major difficulties of the project are to develop an 

appropriate signature-space and an associated algorithm that is 

sophisticated enough to accomplish these goals with an accuracy high 

enough to make it worthwhile. Additional tasks of the project involve 

measuring the accuracy of the developed algorithms and determining the 

level of detail needed by load researchers. We expect, and results to 

date confirm, that the appliances which draw large amounts of power 

will be the easiest to identify consistently from a point external to 

the residence. Fortunately, these tend to be the larger energy users 

and of greatest interest to utilities. 

Section 2 of this report breaks down the overall problem into 

seven sequential subproblems and reports on our general progress with 

each of them. In Section 3 the overall problem is sliced along other 

planes, into a set of detailed subproblems, each of which spans 

several of the subproblems of Section 2. Section 4 presents a simple 

working algorithm which can track individual appliances, given their 

signatures, but can not learn new ones. In Section 5, a tentative 

method for representing appliances and the state of the entire 

residence is developed; this work is still .11 the exploratory stages. in 

The question of marginal value to load researchers of data on 

increasingly smaller appliances is discussed in Section 6. 
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2.0 BREAKOOWN OF PROBLEM 

The overall problem is broken down into seven subparts which can 

be viewed as a sequence which leads to a complete device with all the 

desired properties. Of course the subparts are not solved in sequence, 

but simultaneously, after many iterations through the sequence. This 

breakdown_is not identical to that described in the project work plan, 

but includes all the same tasks, and in retrospect is a more logical 

organization. In the following sections, the seven problems are 

described, and work completed or in progress by MIT is presented. 

2.1 Understanding Appliances 

The first of the six subproblems is for the researchers to attain 

an understanding of the nature of the enormous range of appliances 

available for residential use today. 'The different types of loads, 

circuits, and control mechanisms available produce different types of 

signatures as they operate. For example, refrigerators tend to cycle 

on aQd off three or four times per hour, many electric range burners 

switch on and off automatically within a period of 5-30 seconds, and 

hand-mixers with governor speed controls switch many times per 

second. Many motors draw a sharp current spike for several cycles, 

while others draw an increased current for seconds or longer as the 

shaft accelerates. Different types of electronic power-supply designs 

draw different characteristic harmonic currents. Such variations can 

be put to use in a signature space for distinguishing these 

appliances. The main goal of this subproblem is not a formal classi-­

fication, but merely to sensitize our intuitions to the range of 

information available at a residence's electric service entrance which 

can be incorporated in putative signature spaces. 

In addition to increasing our general knowledge of appliances 

from the consumer and engineering standpoints, we have made 

measurements of appliances with four sets of instruments to see what 

we could observe of their operation. The four types of measurements 

are described in the following four sections. In addition, we intend 
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I: 

to consult with design engineers at a major appliance manufacturer to 

see if there are any insights they can offer us that might lead to 

signatures which promise to discriminate appliances more effectively. 

2.1.1 Oscilloscope Tracings 

Oscilloscope tracings of current and voltage at the wall plug of 

an appliance offer the finest detailed view of the operating charac­

teristics over short time periods. These measurements were taken 

using a specially designed instrument into which the appliance is 

plugged (see Fig. 2-1). The current is measured by way of a shunt in 

the neutral, connected to a differential amplifier, and the voltage is 

measured by way of a voltage divider. These outputs are input to a 

storage oscilloscope, which chops between the two waveforms so that 

synchronous voltage and current waveforms can be recorded. In 

addition, a relay in the line is connected through a delay circuit so 

that at the push of a button the oscilloscope sweep begins, and then 

two (60-Hz) cycles later the relay closes and the appliance turns on. 

In this way, starting transients can be observed consistently. The 

device can also be used with the relay closed to observe "steady­

state" operation of the appliance. 
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This technique, applied to a household inventory of appliances, 

revealed a wide range of steady-state waveforms and starting charac­

teristics. Figure 2-2 shows a sampling of waveforms collected in this 

manner. In each case the voltage waveform is at the top and the 

current waveform below. The time scale is provided by observing the 

60-Hz voltage oscillations. The current vertical scale varies from 

appliance to appliance. 

From these data it was determined that harmonic content of the 

current waveform was potentially very useful for distinguishing the 

smaller appliances--those under 200 W or so--which displayed a wide 

range of waveform shapes. In larger appliances, motors were observed 

to draw a fairly consistent triangular-shaped current waveform, and 

resistive appliances predictably showed sinusoidal waveforms. (These 

observations were later verified and quantified by looking at spectral 

analysis plots of digitized waveforms collected with the AC Monitor, 

as described in Section 2.1.3 below.) From this and other data 

discussed below, it was decided that current harmonics add little 

information to that obtainable by simpler means when distinguishing 

large appliances, but that they could become quite useful if we intend 

to recognize appliances under 200 W. Section 3.1.2 presents a fuller 

discussion of harmonics as a signature component. 

Observation of the starting currents drawn 

appliances showed three different types of behavior. 

by different 

We have loosely 

termed these circuit-transients, mechanical-transients, and switched­

transients, and respectively describe them in the following three 

paragraphs. Section 3.1.3 considers transients in further detail. 
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Fig. 2-2. Waveform variety in small appliances (continued). 



In some small appliances (e.g., small motors or fluorescent 

lights) a current transient of short duration, lasting at most one or 

two voltage cycles, was observed. See Fig. 2-3 for a sample of such a 

circuit-transient. The size of these transients was observed to vary 

markedly from event to event when the appliance was repeatedly turned 

on. These presumably are true transients in the circuit-theory sense 

of the term, and vary according to phase of the voltage at the time 

the appliance was switched on. The residual flux in electromagnetic 

devices should also affect this type of transient. 

Fig. 2-3. Example circuit transient (fluorescent lamp). 

The mechanical-transient type of starting current was observed 

to last up to several seconds (see Fig. 2-4). This was observed on 

large motors (e.g., fans, vacuum cleaner) and was quite consistent 

from measurement to measurement as the appliance was repeatedly turned 

on. These are presumably transients in the load, the electrical 

consequence of the mechanical transient of the load getting up to 

speed. They display an envelope with the character of an exponential 

decay which approaches a steady running level. As would be expected, 

the magnitude is reduced if the load is already in motion. This is 
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the case when a fan which is switched on shortly after it was 

switched off, so that the blades are still moving. 

Fig. 2-4. Example mechanical transient (vacuum cleaner). 

The switched-transient type of starting current is also observed 

on large motors (refrigerators) (see Fig. 2-5). In this case the 

current waveform is of a fairly constant amplitude for a period, and 

it then drops down in a stepwise manner to a smaller amplitude for 

continuous operation. This effect is presumably the result of an 

auxiliary starting coil in the motor which is designed to provide 

additional starting torque before turning off with a thermal switch. 

Starting transients (of all three types) remain a potential 

signature component. In the case of the switched-transients, the 

amplitude and duration of the starting current, if constant, could be 

a useful characteristic. Mechanical transients also seem potentially 

useful. If the load is always switched on from a state of rest, the 

amplitude and/or time-constant of the exponential envelope could form 

signature components. Even if the amplitude varies with different 

starting conditions, the time-constant may remain fairly consistent, 

but this has not been verified experimentally. However, the vari-
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ability and short duration of circuit-transients make them less useful 

and potentially confusing. 

Fig. 2-5. Example switched transient (refrigerator). 

2.1.2 Power Transducer Output 

For many purposes, the complete waveforms discussed above present 

too much information. If only the RMS power (real and/or reactive) of 

an appliance is of interest, then the details of the waveform within 

each cycle can be ignored. We have taken measurements similar to the 

above, while looking only at the RMS power drawn by the appliance, as 

measured with a power transducer (model Wl06 by American Aerospace 

Controls). Again, a special instrument was made into which appliances 

are plugged (see Fig. 2-6). The output of the instrument is connected 

to a chart recorder so that tracings can be collected. 
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Fig. 2-6. Power transducer instrument. 
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Appliance 

Chart 
Recorder 

This apparatus is useful for looking at the long-term behavior of 

an appliance--for example, the cycling on and off of an automatically 

controlled device such as the quartz heater shown in Fig. 2-7. 

Details of the starting currents described above are lost, however. 

Figure 2-8 compares power- transducer output and oscilloscope tracings 

for the mechanical-transient of a table fan starting. The responses 

of these two instruments are considerably different. In the case of 

the power transducer, its analog filter, which performs the RMS 

function, introduces a significant distortion over short time periods. 

Because of this, we conclude that this kind of power transducer would 

not be a suitable "front-end" sensor for the final load-monitoring 

device if starting transients of any kind are to be used as a signa­

ture component. We have not investigated whether or not other types 

of power transducers are commercially available with dynamic 

properties better suited for our purposes, because the Digital AC 

Monitor described in the next section does have the required response 

time as well as many other desirable properties. 

EPRI Progress Report Page 12 



T
i

m
e

 

F
i

g
. 

2
-

7
. 

P
o

w
e

r
 

t
r

a
n

s
d

u
c

e
r

 
o

u
t

p
u

t
 

f
o

r
 

q
u

a
r

t
z

 
h

e
a

t
e

r
. 

F
i

g
. 

2
-

8
. 

C
o

m
p

a
r

i
s
o

n
 

o
f
 

p
o

w
e

r
 

t
r

a
n

s
d

u
c

e
r

 
a

n
d

 
w

a
v

e
f
o

r
m

. 

E
P
R

I
 

P
r
o

g
r

e
s

s
 

R
e

p
o

r
t

 
P
a

g
e

 
1
3

 

Power 



2.1.3 Individual Power and Admittance Measurements 

(Digital AC Monitor) 

In order to measure the RMS power drawn by an appliance, 

information has to be extracted from the information available in 

this 

the 

complete waveform. Although a conventional power transducer performs 

this function, as discussed in the previous section, it does not 

respond quickly enough to step changes in the power. The third 

instrument which we have used for measuring appliance characteristics 

is the Digital AC Monitor. This is a general-purpose instrument 

capable of measuring power and many other properties of ac circuits. 

It was designed and built at the MIT Energy Laboratory, Northeast 

Residential Experiment Station, for Department of Energy purposes. 

Further documentation is included in the Appendix. For the purposes 

of this section, it is only necessary to know the essentials of its 

operation. 

The AC Monitor is a microprocessor-based instrument which samples 

current and voltage waveforms, each 64 times per 60-Hz cycle. It then 

works numerically on the digitized waveforms to calculate a variety of 

quantities, including real.and reactive RMS power, voltage, current, 

impedance, admittance and total harmonic distortion. The calculated 

quantities are output digitally, over an RS-232 line, to a terminal or 

computer programmed to receive the data. The digitized waveforms can 

also be transmitted for plotting or analysis. The instrument can 

timeshare between as many as eight circuits if desired. It can be 

programmed to calculate and output either "instantaneous" values 

(based on a sin~le 60-Hz cycle) or average values (averaging 

"instantaneous" values over a specified time period). 

Using the waveform instrument of Fig. 2-1, connected to a Digital 

AC Monitor communicating with a computer terminal, individual 

appliance measurements were taken and plotted. One of our concerns 

was to see how power, current and impedance of typical appliances vary 

as a function of line voltage. Section 3.1.1 discusses the problem 

this introduces. Line-voltage variations were introduced by con-
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From data of this nature, it was determined that of power, 

current and admittance, admittance remains the most constant as a 

function of line voltage. Accordingly, admittance is to be used as a 

signature component. This subject is considered in further detail in 

Section 3 . 1.1. 

2.1.4 In Situ Admittance Measurements 

The majority of our measurements of appliance operation have been 

of appliances in normal use, in place, at the residence of the author. 

The measurements discussed in this section are all taken by the 

Digital AC Monitor, monitoring the two out-of-phase 120 V legs on the 

utility side of the house distribution panel. Figure 2-11 shows the 

instrumentation arrangement. Current transformers were placed around 

the two legs so that a small shunt and operational amplifier provides 

the± 5 V signal needed for the AC Monitor. Line-voltage signals are 

provided by voltage dividers which simply plug into wall sockets on 

the two legs. The AC Monitor communicates by RS-232 at 9600 baud to 

an HP984SB desktop computer programmed to collect and format the data. 

Data and software are transferred to and from the MIT computing 

resources via tape cartridge. A great deal of effort has gone into 

the development of software for analysis of this data. Data that has 

been collected in this manner and which is presented in Section 3 of 

this report falls into the following categories: 

• Real and/or reactive power on one or both legs of the house 

as a function of time (with one-second resolution). 

• Admittance of one or both legs as a function of time. 

• DC currents as a function of time. 

• Line voltage as a function of time. 

• Voltage or current waveforms. 

• Spectral analysis of current 

(Discrete Fourier Transform of current waveforms). 
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• Scatter-plots of whole-house load transitions (real and 

reactive power or admittance) resulting from the switching 

on and off of individual appliances. 

This data is used to support a wide variety of conclusions which 

are taken up in detail in subsequent sections. 

2.2 Representing Appliances 

After the first subproblem is complete 1 gaining an understanding 

of the nature and variety of residential appliances, the second 

subproblem can be approached. This subproblem is to decide upon a 

system for modeling appliances. Each appliance model must be capable 

of representing the information needed to keep track of the 

appliance's cycling on and off, and to identify the appliance by its 

common name (e.g., "refrigerator"). It must contain all the relevant 

signature information and whatever other information is necessary for 

the application of the signatures. The appliance representation is to 

be learned (created and modified) as the algorithm determines the 

appliance inventory. It can then be accessed and applied as the 

algorithm follows the behavior of the individual appliances. 

It is not the models of individual appliances so much as an 

appliance representation system (ARS) that has to be determined in 

this subproblem. The 

particular appliances. 

algorithms for its use. 

particular appliance. 

ARS is in effect a "language" for describing 

We will specify this language and the 

The algorithms will then apply it to each 

The major difficulty in specifying the ARS is 

to make it powerful enough to describe a wide range of appliances 

usefully, yet not so complex that it can not be automatically applied 

by reasonable algorithms. 

The abstractness of this introduction may be clarified by Sections 

2.2.1 and 2.2.2, which describe examples of ARSs which display two 

extreme properties. The first example ARS allows appliances to be 

represented by a region of the signature vector-space. This is fairly 
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straightforward to apply by automatic algorithms, and Section 4 uses 

this ARS fairly successfully on a limited range of appliances. One 

shortcoming of this Signature Space Region (SSR) ARS is that it can 

not represent many types of complex appliances (e.g., dishwashers and 

washing machines) which contain more than one electrical component and 

which can not be described as being either simply ON or OFF, but 

rather have a set of possible states that they can be in at any given 

time. Other shortcomings of this simple representation are discussed 

in Sections 3 and 4. 

The second ARS presented below allows for a much wider range of 

appliances. It allows appliances to be described as arbitrary finite 

state machines. In principle at least, this can describe any con­

ceivable appliance. The difficulty with this ARS is that it is not 

likely that algorithms can be developed to learn the appliance 

inventory automatically, because the unconstrained nature of the ARS 

allows for too many possibilites, many of which would never be instan­

tiated in a real-world appliance. 

The probable compromise between these two extremes will allow 

appliances to be represented by a tightly constrained set of finite 

state machines, with only a finite set of allowable topologies. An 

example of such a system is given at the end of Section 5. The 

methodology by which we hope to arrive at a suitable ARS is to 

converge on it from these two directions, with the examples of the two 

following sections as starting points. By considering particular 

appliances for which the Signature Space Region ARS is inadequate, we 

can determine the minimal ways in which it must be expanded. To do 

this we must consider particular models for particular appliances, but 

this is not the goal in itself. The goal is to arrive at the system 

which can minimally subsume the particular models. 

Approaching from the other direction, we must consider the 

learning and recognizing algorithms of Sections 2.3 and 2.4 to verify 

that the ARS can be applied to the residential measurements. If an 

ARS were too complex to apply, it would have to be simplified for the 

EPRI Progress Report Page 19 



success of the overall project. The cost of this reduction would be a 

class of appliances which could not be automatically recognized. 

This aspect of our research is still at a very exploratory stage and 

is discussed in Section 5. 

2o2.1 Signature §pace Regions 

The Signature Space Region (SSR) Appliance Representation System 

(ARS) allows each appliance to be modeled by a region of the signature 

vector-space. It can be specified in two parts: the individual signa­

ture components and the geometry of allowable regions. For example, 

Fig. 2-12 shows a rectan~ular region of a two-dimensional signature 

space which might be used to represent a 100 W incandescent light 

bulb. The components of the signature space are the independent real 

and reactive power measurements (on one leg of the house). The region 

is a rectangle that is 10 W wide and 5 VAR high, centered on the point 

(100 W, 0 VAR). (For reasons to be discussed later, admittance, 

though less familiar, is preferable to power for our purposes.) 

-----1--------m111.,_-REAL POWER 
100 W 

Fig. 2-12. Rectangular region-of-space representation for 100 W 

incandescent light bulb. 
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To apply this representation to a monitored residence, the 

algorithm would monitor the real and reactive power consumed by the 

house, and if it increased by 100 W (with no change in reactive 

power), the algorithm would determine that the light bulb turned on. 

Changes which were not exactly 100 W yet still in the specified region 

would count as this same bulb. If the power changes by an amount 

which is the negative of a vector in this region, the algorithm would 

determine that the bulb turned off. The size of the region allows for 

noise and other errors in the power measurements@ 

To learn this representation from monitored residence data, the 

algorithm could perform a cluster analysis of changes in real and 

reactive power, note a large number of changes clustered at approxi­

mately 100 W, and draw a rectangle to include a large fraction of 

them. It might then decide that the appliance is a light bulb from 

time-of-day statistics and the amount of real and reactive power 

drawn. 

Note that this simple picture is merely a sketch. 

to be expanded considerably in a functional algorithm. 

It would have 

Consider for 

example the complications that arise from the existence of other 100 W 

appliances, from changes in power due to line-voltage fluctuations, or 

from the fact that the filament may be part of a three-way bulb in 

which first one, then the other, then both filaments are switched on. 

These and other problems are discussed in Sections 3 and 4. 

The allowable geometry for these SSRs is worth careful con-

sideration. The optimal set of allowable shapes is probably not the 

set of rectangles. Although rectangles allow a computationally simple 

determination of whether or not a given vector is included, they do 

not have the correct statistical properties with respect to measure­

ment error. If the dimensions of the region are determined primarily 

by noise in the measurement process, and if the noise has a Gaussian 

distribution, then ellipsoids are more likely to capture a given 

percentage of the distribution while minimizing the accidental capture 

of other appliances. (Note: we are expanding the definition of the 
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term ellipsoid here to refer to generalized ellipsoids in the multi­

dimensional signature space, not restricted to only the three­

dimensional case.) It is yet to be determined whether to allow ellip­

soids with arbitrary axis orientations, or only ellipsoids in which 

the axes are parallel to the signature space axes. Figures 2-13 and 

2-14 display these two possibilities. Requiring parallel axes as in 

Fig. 2-13 assumes that the measurement errors in the separate com­

ponents are independent. If the errors are correlated, then the 

arbitrary ellipsoid regions of Fig. 2-14 would be desirable. This 

would require some additional storage and computation time, but could 

increase the overall accuracy of the device. Initial investigation of 

real and reactive power measurements as described above in section 

2.1.4 shows little correlation, but the signature space components 

must be specified, and a wider selection of appliances needs to be 

examined before the geometry can be specified. 

I -

Fig. 2-13. Ellipsoids with axes 

parallel to signature axes. 
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2.2.2 Finite State Machines 

The finite state machine (FSM) appliance representation system 

(ARS) allows for far more complexity in appliance specifications than 

the SSR ARS. The FSM ARS is effectively a language in which one can 

describe a set of (mutually exclusive) states that the appliance can 

be in, and the signatures that are observed when the appliance changes 

from one state to another. For the purposes of this report, a FSM is 

defined to be a diagram, such as Fig. 2-15. The diagram consists of a 

set of circles (the states) and interconnecting arrows (the 

transitions). The circles are each labeled with the name of the 

state. These state names are for identification purposes only and are 

not essential to the FSM. The transitions are labeled with the signa­

ture vector that is observed when the machine changes from the state 

at the tail of the arrow to the state at the tip of the arrow. Two 

such diagrams which are topologically equivalent (including identical 

transition signatures) are considered to be the same FSM. 

Fig. 2-15. FSM for 100-150-250 W three-way lamp. 

The example depicted in Fig. 2-15 represents a "three-way" lamp. 

There are four states and four transitions. The four states, OFF, 

LOW, MEDIUM, and HI, can be traversed in a cyclic fashion in that 

sequence only. The transitions are labeled assuming that the bulb is 

of the 100-150-250-W variety. For clarity, only a single real-power 

value is indicated for each transition; in practice, this would be 
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only one component of a higher dimensional signature vector. Note 

that the transitions indicate only the change that is observed when 

the lamp changes state, not the total power consumed by the appliance. 

For example, when the bulb is switched from LOW to MEDIUM, the 100 W 

filament turns off and the 150 W filament turns on. What is observed, 

however, is a net increase of SOW, so this is the signature 

associated with that transition. 

A more complex FSM is used to describe an appliance which can 

change from any of four states to any other, rather than only in the 

cyclic fashion of the three-way lamp. Consider for example a three­

speed fan controlled by push-buttons, so that it can change between 

states arbitrarily. It would still have four states, but there would 

be more transitions than in the cyclically constrained lamp. Figure 

2-16 is the FSM for such a fan, assuming the power levels are 100, 200 

and 300 W. Again, only the real-power component of the signature 

vectors is used in labeling the transitions. Reactive power and other 

signature components, although required in the complete FSM, are 

omitted for clarity. 

+300 

-200 

Fig. 2-16. FSM for 100-200-300 W push-button controlled fan. 
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Although the transitions of these FSMs are labeled with signature 

vectors, it is more likely that SSRs are the appropriate labels. The 

same options exist here as with the SSR ARS: the geometry of the 

region could be constrained to be rectangles, parallel-axis ellip­

soids, or arbitrary ellipsoids, but which of these we have not yet 

determined. The dimensions of the regions could vary from appliance 

to appliance and from transition to transition within an appliance. 

The SSR ARS of Section 2.2.1 can be viewed as a special case of 

the FSM ARS. In the SSR ARS, only two states are considered, OFF and 

ON, and only two transitions, which must be the negatives of each 

other. Thus the FSM ARS reduces to the SSR ARS if FSMs are required 

to fit the template shown in Fig. 2-17. In this figure, X represents 

a SSR and -X its negative. Constraining FSMs to only those of this 

shape is an extreme restriction of the power of the FSM model, and 

accordingly, many appliances would not be properly represented. 

However, the full FSM ARS as presented in this section is insuf­

ficiently constrained to be useful. The goal of the appliance repre­

sentation subproblem is to find an appropriate set of constraints, as 

discussed in Section 5. 

Fig. 2-17. FSM equivalent to signature space region. 
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2.3 Recognition Problem 

The third major subproblem is to develop an algorithm which, if 

given the representations of the appliances in the residence, can 

determine individual appliance activity. It must be capable of recog­

nizing the individual appliance transitions from the measurements 

available of the entire residence. Although presented separately 

here, this subproblem and the learning problem described in Section 

2.4 are actually deeply intertwined. The learning problem is to 

develop algorithms which can learn the appliance representations for 

the individual appliances; the recognition problem is to develop 

algorithms which use those representations to track state changes. 

The set of appliance representations is the data structure through 

which the two algorithms communicate. 

We begin by introducing some terminology while sketching the 

computational scenario that seems likeliest at this time. If 

developed· successfully, the physical load data-acquisition device will 

be installed in the line between the utility's pole transformer and 

the residence's distribution panel. For convenience of installation, 

this will probably be at the kilowatt-hour meter socket. Sensors at 

this point will provide a data stream of primary residence variables 

as a function of time. The exact nature of these variables depends on 

the sensors selected (see Section 3.2) and might be voltage and 

current, for example. From this data the residence transitions will 

be calculated. The residence transitions are a stream of signature 

vectors as calculated for the entire residence. For example, it is 

likely that this will be· a vector which includes conductance and 

susceptance on each of the two legs as four of its components. Many 

of the residence transitions will simply be appliance signatures. 

Some residence transitions will be the "sum" of two or more appliance 

signatures, created when more than one appliance changes state at the 

same time. Other residence transitions might be the result of noise 

or other errors. It is the job of the recognition algorithm to deter­

mine which residence transitions fall into which of these classes. 

When the residence transition is determined either to be an appliance 
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signature or able to be broken down into several simultaneous 

appliance signatures, the recognition algorithm must update a 

residence state vector which keeps track of the current state of each 

appliance in the residence. 

The residence as a whole is modeled as an n-tuple of 

(constrained) finite state machines, the residence model, containing 

one entry for each appliance that has been identified. The residence 

state vector is an n-tuple of FSM states containing one entry for each 

appliance FSM in the residence model. The nth entry of the residence 

state vector is the state of the nth appliance of the residence model. 

If the residence state vector can be determined accurately as a 

function of time, then any conceivable appliance usage statistics can 

be calculated straightforwardly as a small addition to the program. 

The recognition problem deserves immediate attention for three 

reasons. First, it is far easier than the learning problem. If the 

recognition problem can not be readily approached, then the entire 

project surely will not succeed. We would want to find this out as 

soon as possible. Second, it provides a fallback position in the 

event that the learning problem proves to be intractible. If an 

entirely automatic algorithm is too difficult, we might want to lower 

our goals to a recognizing device only. This would involve some human 

intervention in the house to be monitored--perhaps running each 

appliance one at a time while identifying it by name to the device--so 

a simple algorithm could be taught the different appliance models. 

The device could continue automatically after that, using the recog­

nizing algorithm and gathering statistics. Although this would 

involve some intrusion into the residence, it would not involve 

hardware installation or removal internal to the house. The third and 

most important reason for addressing the recognition problem at this 

point is that it provides a check on our progress in the first two 

subproblems. By having a computer try to identify appliance activity 

from a specified residence model, we can see how successful we have 

been in our understanding and modeling of appliances and in our 

selection of signatures. 
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We have created and operated a simple, yet reasonably successful, 

recognition program. The algorithm uses the SSR ARS to model 

seventeen appliances. Over periods of several days, the algorithm 

correctly recognizes over 90% of the major (over 200 W) residence 

transitions of an entire house under typical conditions. Section 4 

describes this program and its accuracy in further detail. A similar 

program which uses the FSM ARS would be only slightly more complex. 

Although the program of Section 4 is valuable as a demonstration, it 

should not be taken as a model of the final recognition algorithm. We 

expect that the final algorithm will be considerably more 

sophisticated and quite different in structure. The recognition and 

learning processes will be integrated in a way that bears little 

resemblance to the algorithm presented here. 

2.4 Learning Problem 

The fourth major subproblem is to develop an algorithm capable of 

building the residence model from the observed residence transitions. 

This algorithm can be viewed as a subroutine which is called by the 

recognition program every time a transition occurs which can not be 

interpreted in terms of the residence model and residence state 

vector. It would ascertain why the transition was uninterpretable and 

update the residence model and state vector accordingly. 

The learning problem is by far the most difficult portion of the 

entire project. So far we have not approached this problem except to 

note that a statistical cluster-analysis technique, as briefly 

mentioned above in Section 2.2.1, can be used to identify SSRs which 

contain large numbers of transitions. To go beyond this and create 

the states and transition linkages of the appropriate FSMs is a diffi­

cult challenge, but one which we believe is practical, given a suffi­

ciently constrained set of FSMs in the ARS. 

Because we have not seriously approached this problem, there is 

little to report here except to sketch some approaches. Two general 
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strategies for the learning problem present themselves: (1) to build 

up from "two-state" appliance models, or (2) to break down a complex 

residence model. A combination of these two approaches might also be 

viable. These strategies are described in the following two 

paragraphs. 

In the "build-up" approach, the algorithm would begin by assuming 

that all appliances are of the two-state ON/OFF type shown in 

Fig. 2-17. The cluster-analysis technique would indicate which 

transitions occur frequently and consistently enough to warrant 

inclusion. With this as a beginning, the algorithm would begin to 

correct the residence model, improving or combining FSMs as necessary 

until it converged upon a satisfactory residence model. We stress 

that the details of the method by which this is to be accomplished are 

not yet clear to us. 

In the "break-down" approach, the algorithm would 

building a single FSM that models the entire residence. 

begin by 

This FSM 

would then be separated into independent appliance models by a mathe­

matical factoring process that is sketched in Section 5. The single 

FSM which represents an entire house would be very complex. Consider, 

for example, that if there were sixteen independent two-state 

appliances the FSM would have the structure of a sixteen-dimensional 

hypercube which has 65536 nodes and over a million transitions. 

Although this approach seems more difficult at first glance, it is too 

soon to eliminate it from consideration. (Note for example that the 

real and reactive power four-vector for the entire house is an 

available clue as to whether or not two observed states belong to the 

same residence FSM state.) 

2.5 Identification Problem 

The identification problem is to determine the common names of 

the household appliances from the learned representations and the 

observed usage statistics. Given the enormous range of available 

appliances, it is not clear how well this task can be automated. We 
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expect that it will involve a multidimensional feature space which 

will include signature components and observed usage components. For 

example, refrigerators as a class might be represented as a region of 

the feature space where the greatest operating power level is between 

100 and 500 W, the power factor is inductive, one leg rather than two 

is used, the duty cycle is between ten minutes and an hour, there is 

little correlation with time of day, and slight correlation with 

temperature. These would seem likely parameters but the exact set of 

features to incorporate in the feature space remains to be determined. 

It is not clear at this point exactly how the range of topologies 

allowed by a FSM ARS would be incorporated in such a feature space. 

Perhaps this will involve the design of an "expert system" rather than 

a simple feature lookup. 

After specifying the feature space, the difficult part of this 

task will be to obtain enough data from particular appliances to feel 

secure that the existing range of any particular appliance class has 

been covered. An algorithm to check the observed characteristics of 

an appliance against a list of appliance class regions is 

straightforward. 

The probable locus of the identification algorithm is not in the 

appliance load data-acquisition device. The scenario we expect is 

that the individual appliance-recognition devices will transfer their 

residence model and appliance usage statistics by telephone line or 

transportable media to a central computer facility at regular 

intervals. A mainframe computer at that facility is the logical place 

to run the identification algorithm for three reasons. First, the 

algorithm requires a large database of appliance classes which need 

not be repeated in every appliance load data-acquistion device. 

Second, the database will evolve over time because the full range of 

existing appliances will only be encountered slowly and because new 

appliances are constantly introduced into the marketplace. Consist­

ency would be promoted by maintaining the database at a single central 

facility. Finally, we expect that the identification process can not 

be fully automated, so it would be best to attempt it at a location 
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. where human experts can intervene as required. 

2.6 Testing the Algorithm 

The testing of any proposed algorithms can take place in three 

ways. The first is that the algorithm can be tested in real time in 

an operating residence in the way that the recognition algorithm of 

Section 4 has been tested in the home of the author. This allows a 

direct comparison between the output of the program and what the 

author knows to be the case in the house. It should be very useful 

for "shaking down" the algorithm and finding major difficulties that 

it can not handle. For more refined testing and optimization of 

parameters, a more controlled test procedure is necessary. 

The second and third tests involve a controlled test procedure 

involving either real or simulated data streams. The method which 

uses real data requires that monitored house data be collected during 

a period in which the occupants keep a log of appliance usage. The 

log could be generated automatically if we use a house with either the 

Electric ARM or New England Electric System MATREC System already 

installed. We would feed the measured residence transition data 

repeatedly to the algorithm, "tweaking" its parameters until optimal 

correspondence with the log is attained. To use simulated data, real 

data would be collected, and individual appliance events would be 

extracted from it manually. These events would then be fed to a 

synthetic load-data generator which would put together appliance 

combinations according to the tester's command. The simulated method 

has the advantage that appliance combinations and coincidences which 

did not occur in any observed data stream can be created and tested. 

The real-data method has the advantage that appliance combinations and 

coincidences which the testers did not think of are likely to occur. 

We expect that all three types of algorithm testing will be used. 

Testing should be performed in two stages. First the recog­

nition, learning, and identification algorithms should be tested sep­

arately, then the combined algorithm should be tested as a unit. The 
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separate testing is easier and more likely to point to those parts of 

the algorithms which need improvement. Because of the deep inter­

twining of the recognition and learning processes, joint testing is 

necessary to attain confidence in the overall method. 

Testing of the recognition algorithm, given a correct residence 

model, is straightforward. Statistics of the percentage of 

transitions correctly identified, or the percentage of energy use 

correctly apportioned to the individual appliances, can easily be 

tabulated. (This information is given in Section 4 for the simple 

recognition procedure presented there.) Quantitative evaluation of 

the learning algorithm is.more difficult because its output is a list 

of FSMs. 

An important point to note about the learning algorithm is that 

it can not learn everything about the residence all at once. It will 

have to update the residence model continually over time as it 

observes new appliances and new aspects of appliances that are already 

partially modeled. As a consequence, one test of success for the 

learning algorithm is that it be able to converge upon the correct 

residence model if it is given the residence transition stream for a 

sufficiently long period. To be self-correcting, we would like to 

require further that it should be able to converge upon the correct 

residence model from any incorrect residence model which it may have 

erroneously created. This is a difficult test for us to administer 

and a difficult test for the algorithm to pass. The most difficult 

part is verifying that this can be done in a reasonable time period. 

It is often possible to demonstrate that an algorithm will eventually 

converge upon a satisfactory solution, yet not know how long that will 

take. Given the intended application of the algorithm, it would be 

unsatisfactory if the algorithm took more than one or two months of 

data to converge upon the residence model. (An interesting 

possibility to consider is that the convergence might be hastened by 

an initial assumption about the residence model before any actual data 

is examined.) 
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If the algorithm could learn a reasonable residence model in less 

than one or two months, we would consider it successful. This raises 

a serious problem in the task of algorithm verification. In order to 

show that the learning aspects of the overall algorithm are oper­

ational, a very long time-stream of real residence transitions may be 

required. This may be difficult to manage with the storage facilities 

available on the HP9845B desktop scientific computers which we have so 

far been using. If a problem arises in this area, there are two 

possible solutions. The first is that we could transfer the algorithm 

to a mainframe computer for testing purposes. The second possibility 

is that we could settle for testing the learning aspects of the 

algorithm exclusively with simulated data, created and then discarded, 

as the algorithm requires it. Our hope is that this long a time 

period not be necessary except for appliances that are used only 

seasonally. 

When an algorithm is developed, we will begin testing it by the 

first procedure described, in situ testing in real time, to the 

maximum extent possible. The detailed design of the load-data 

simulator and further testing procedures will wait until after the 

signature vector components have been determined. We expect that a 

transition percentage system will be used in the final test procedure 

as a test of success. We will allow the overall algorithm to operate 

on a real or simulated data stream, giving it time to build a 

residence model. After the residence model has been determined (to 

within a specified tolerance), the time required to learn it will be 

noted and the algorithm will proceed. We will keep a record of its 

action for each major transition, where a major transition is defined 

to be one in which the real power components sum to over 200 W. We 

will compare the algorithm's assessment of every major transition with 

the logged appliance activity (if real data is used) or with the 

command to the load-data simulator (if simulated data is used). A 

numerical accuracy score will be determined by taking the percentage 

of major transitions which are identified correctly and subtracting 

the percentage which are identified incorrectly. Transitions which 

the algorithm gives up on and ignores will count as zero. Our goal is 
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that the accuracy of the overall algorithm as computed in this way 

will be over 90%. 

The 200-W threshold for major transitions has not been selected 

for any principled reason. It is merely our assessment of the region 

below which the algorithm is likely to perform poorly. Our intention 

is to keep separate statistics on transitions binned by power level 

(e.g., 0-100, 100-200, 200-300 W, etc.). From this data we can not 

only calculate the major transition percentage score as defined above, 

but also see in detail where the algorithm is failing. 

2.7 Implementation· 

The final implementation of the appliance load data acquisition 

algorithm into a physical device is not part of this project. We do 

need to keep it in mind, however, as the goal towards which the 

project is aiming. 

computational needs 

final device. 

Accordingly, it is necessary that we consider the 

of the microprocessor-based realization of the 

Without developed algorithms in hand, this can of course only be 

an estimate. The only benchmark we have to extrapolate from is the 

simple recognition program detailed in Section 4. This program 

currently runs in real-time on an HP9845B desktop computer. The 

computer CPU contains two HP proprietary eight-bit microprocessors. 

The program is written in an intrepreted BASIC, and fits, along with 

all necessary data structures, in less than half of the 187 K bytes of 

memory available. 

If we assume that the algorithm in the physical device will be 

written in assembly language or compiled by an efficient compiler, and 

if we assume that the target hardware will contain a 32-bit micro­

processor such as the MC68000, then we can conservatively estimate at 

least a factor of ten improvement in speed, and realistically much 

more. Benchmark execution-time data provided by Hewlett Packard 

suggests a factor between ten and one hundred. We further assume that 
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the ultimate learning and recognition algorithms will require no more 

than ten times as much processing as the recognition algorithms of 

Section 4. A factor of ten increase for learning is conservative 

because the device will spend far more time recognizing than learning. 

The learning algorithm only needs to be called when an unrecognized 

transition is detected. We conclude then that a state-of-the-art 

microprocessor such as the MC68000 should be sufficient to serve as 

the CPU in the final implementation of the appliance load data­

acquisition device. 

If necessary, the processing could be split between two micro-

processors. One could act as a front-end to monitor the sensors and 

calculate the residence transitions. It would transfer the signature 

to the main processor whenever a residence transition was detected. 

The main processor would run the recognition and learning algorithms. 

This is analogous to the division between the 8085-based Digital AC 

Monitor and the HP9845 described in Section 2.1.4. 
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3.0 DETAILED PROBLEMS 

There are many detailed problems to be addressed in the develop­

ment of the different aspects of the appliance load data acquisition 

algorithm. This section describes a number of these problems and 

offers solutions that seem appropriate at this point in our research. 

These detailed problems each play a role in several of the sub-

problems described above in Section 2. The first six subsections are 

concerned primarily with characteristics of signatures. The remaining 

subsections are concerned primarily with appliance representations. 

3.1 Nature of Signature 

The selection of the signature space components is the single 

most crucial aspect of the entire development effort. If the selected 

features do not separate similar appliances, then they are insuf­

ficient for our purposes. If they are too difficult to compute, then 

the resulting algorithm will not be able to operate in real time. If 

the selected features occur inconsistently; then an appliance may 

appear to be two or more separate appliances. Our plan is to approach 

this selection warily. For our first pass through the subproblems of 

Section 2, we will use only admittance four-vectors as signatures. 

After making some initial progress towards a learning algorithm, we 

will return to reassess the signature selection problem. 

Table 3-1 presents a taxonomy of the signature components we have 

considered. The primary dichotomy of the breakdown between steady­

state and transient characteristics leads to two orthogonal sub-spaces 

of the signature vector space which play an important role in certain 

algorithms. Components from the steady-state half of the taxonomy 

generate what we call the steady-state subspace of the signature 

vector space. These components relate to characteristics which are 

relevant to the entire period during which an appliance is ON (or in 

any given particular state) and therefore can be used in ways in which 

the transient components, which only relate to transition periods, can 

not. 

EPRI Progress Report Page 36 



Table 3-1 Signature Component Taxonomy 

\ 
Admittance 

60 Hz Current 

Power 

Steady-state Harmonic I " 

DC I " 

Subharmonic\ " 

Signature 

\ 

Circuit 

Type Mechanical 

Switched 

\ 
Peak 

Transient Amplitude Integrated 

DC 

Temporal I Duration 

Time Constant 

The steady-state components of the taxonomy can be further 

classified according to frequency, relative to the 60-Hz voltage fund­

amental. The top group of the table--power, current and admittance at 

the fundamental--includes the most consistent characteristics we have 

observed. They contain roughly the same information but differ suc­

cessively by a factor of the line voltage. The choice between the 

three is considered in Section 3.1.1. Admittance has been selected 
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for our first pass through the algorithm-development process because 

it is most consistent with line-voltage variations under most circum­

stances. The same three options exist at higher frequencies, at lower 

frequencies and at the de level. Harmonics are discussed in Section 

3.1.2. Subharmonics are not applicable directly because they are 

misinterpreted by the method presented in Section 3.3 for detecting 

transitions. This effect, in the case of the subharmonics of washing 

machine agitation, is discussed in Section 3.4. Steady-state de 

currents have only been observed for very small appliances such as the 

crock pot of Fig. 2-2, set on LOW. (We presume this is the effect of 

a diode placed in series with the same heating element used for the 

HIGH setting.} Steady-state harmonic and de characteristics remain 

potential signature components for a second pass through the develop­

ment process, but they only seem to add new information over 

fundamental characteristics if appliances under 200 Ware considered. 

The transient half of Table 3-1 is broken down according to type, 

characteristics dealing with the amplitude, and characteristics 

dealing with the duration. Section 3.1.3 discusses these properties of 

the transients. Because of the general nonrepeatability of trans­

ients, because they are less useful than steady-state properties for 

some algorithms, and because they lack the linearity discussed in the 

next paragraph, our initial transient subspace will be null. We may 

reconsider transients at a later time if the steady-state subspace 

proves insufficient for the overall algorithm. 

Signature components, to be useful, must obey certain linearity 

laws. The primary constraint is that the signature of a given 

appliance transition must be independent of the state of the remaining 

appliances. For example, if a 375 W increase in power consumption 

occurs when the refrigerator turns ON, then we would like that always 

to be 375 W, whether everything else in the house happened to be ON or 

OFF. Fortunately, this is the case as long as the primary sensors are 

linear. The second linearity constraint we would like to see is to 

have the residence signature observed when two appliances change state 

simultaneously be the sum of the two separate signatures observed if 
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the appliances were to change states at different times. This is only 

partially the case. The signature components in the steady-state 

subspace behave linearly in this way. The transient components might 

happen to, but in general do not. This makes the steady-state 

components especially valuable for the program of Section 4 when 

breaking down simultaneous transitions. 

Note that if only steady-state components are to be used, then 

the FSM ARS can be reorganized somewhat to take advantage of the fact 

that each state is associated with an operating level. For example, 

each state can be associated with the power which the appliance draws 

while in the state. The transition signatures (power-level changes) 

then become redundant as they can be calculated by subtracting the 

connecting state power levels. 

Any (invertible) linear transformation of the signature space 

will result in a space equally suitable for the purposes of the 

learning and recognition algorithms. For example, if real and 

reactive power are used as two of the components, and a sensor problem 

results in misscaled and phase-shifted measurements, the algorithm is 

not adversely affected. This is because the transition signatures are 

merely moved about in the space; this affects the learning and recog­

nizing algorithms equally. On the other hand, other pairs of measure­

ments which convey the same information, such as volt-amperage and 

power factor, even if measured with complete accuracy, are unsuitable 

for the algorithm because they lack linearity. It is worth mentioning 

in this context that each of the steady-state signatures listed in 

Table 3-1 can be viewed either as a single complex number (phasor) or 

as a pair of real components. The choice between a vector space over 

the real numbers or one with half as many components over the complex 

number field is immaterial from a mathematical point of view. We 

select the option with pairs of real numbers because it is closer to 

the computational representation. 

One final note is that because of the lack of linearity in the 

transient subspace it may be preferable, from a certain point of view, 
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to think of the entire signature space as the cross product 

steady-state vector space with a transient feature space. 

steady-state subspace displays vectoriality. The transient 

of the 

Only the 

subspace 

is merely a collection of eclectic characteristics. Transient type, 

for example, can only take on the three values presented in Section 

2.1.1. 

3.1.1 Power, Current or Admittance: Line-Voltage Effects 

For use as a signature, an appliance transition can be charac­

terized by the accompanying change in either power, current or 

admittance (more than one would be redundant). All three measures 

share the required linearity properties. They differ, successively, 

by a factor V, the utility line voltage. If V were constant, they 

would contain exactly the same information, and any of the three could 

be selected. Given the vicissitudes of V, however, the three must be 

examined to see which is the most consistent signature. We wish the 

signature to remain constant if the line voltgae varies from 115 to 

125 V. Three separate arguments lead to admittance as the correct 

choice. 

From the theoretical point of view, appliances can be modeled as 

two-terminal linear passive networks, i.e., "RLC" circuits. Such a 

circuit is completely characterized by a single .complex constant, 

admittance, independent of the applied voltage. (The real and 

imaginary components of the admittance are the conductance and 

susceptance.) In contrast to the constancy of admittance, current 

will vary in proportion to V, and power will vary in proportion to V 

squared. This argues ineluctably for admittance if we can accept the 

RLC modeling. The complication, of course, is that no real-world 

device behaves exactly like an RLC circuit. The conductance of 

resistive devices, for example, changes with temperature; motor 

·admittance varies in more complex ways, as a function of load and 

voltage. But given that many appliances can be approximately modeled 

by RLC circuits and that the deviations from the model are not 

consistent, admittance is certainly the appropriate choice. 
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A second argument for admittance is based on measurements of 

individual appliances as described in Section 2.1.3. To see how well 

the RLC model fits actual appliances, we measured the admittance of a 

selection of appliances in a laboratory environment in which we con­

trolled the line voltage. Figures 3-1 through 3-3 show three observed 

behaviors. The electric coffee pot of Fig. 3-1 displays 

constant admittance. The water serves to stabilize the 

element temperature and, as a consequence, the resistance 

element is nearly constant. The light bulb of Fig. 3-2, 

a nearly 

heating­

of the 

although 

still resistive, is not temperature stabilized. Higher voltages cause 

higher power levels, which cause higher temperatures, which cause 

higher filament resistances. Therefore, the conductance decreases 

with increased voltage. The current increases less than linearly and 

the power increases less than quadratically. The refrigerator motor 

of Fig. 3-3 shows a more complex behavior. Apparently some aspect of 

the design was optimized for 110 V which causes the minimum in the 

power at that point. The data for these and other appliances lead to 

the conclusion that admittance, although not constant, is generally 

more stable than current and power. 

POWER 

300 

108 

,"" 105 119 115 120 125 
VOLTAGE 

CURRENT 

,ae 105 110 11s 120 12s 
VOLTAGE 

ADMITTANCE 
.04 -----------, 

.83 '" 

.Bl • 

,00 105 110 115 120 125 
VOLTAGE 

Fig. 3-1. Effect of voltage change on coffee pot. 
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Fig. 3-2. Effect of voltage change on 60 W light bulb. 
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Fig. 3-3. Effect of voltage change on refrigerator. 

As a check on the two previous arguments, and in order to deter-

mine the value of admittance for actual utility line-voltage 

variations, we have collected data in the field, as described in 

Section 2el.4. The voltage at the residence is usually held fairly 

stiffly at about 125 to 126 V. Figure 3-4 shows the voltage on one 

leg for a typical 24-hour period. With such a consistent voltage, 

admittance, current and power are of equal utilityey Several short 

periods were observed, however, during which the line voltage varied 

widely and unsteadily from this behavior. (These periods began after 

lightning storms and observed flickers. We presume that a storm-

triggered fault caused the area feeders to be reconfigured, moving the 

residence temporarily further from the local substation.) Advantage 

was taken of these intervals to collect data which contrast power and 

admittance measurements. 

125 

125 
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Fig. 3-4. Line voltage variation over 24 hours. 

Figure 3-5 is a scatter plot of the real and reactive power 

signatures associated with the refrigerator turning ON and OFF over 

several days, including days displaying a wide range of voltages. The 

asterisks indicate ON transitions, and the circles mark the OFF 

transitions. The ON transitions cluster with a higher real power than 

the OFF transitions because the power usage of the refrigerator 

decreases slightly with time during each cycle, as can be seen in Fig. 

3-6. Part of the wide scatter visible in Fig. 3-5 is due to line-

voltage variation. A scatter plot of admittance for the same 

transition events shows reduced scatter. Instead of plotting 

admittance per se, we plot normalized power at 125 V, the average line 

voltage for this residence. Figure 3-7 indicates the admittance 

distribution by plotting the normalized power, which is calculated as 

Pnorm = 125) Y = (125/V) 2 
P 

where Y is admittance, Vis the line voltage and Pis the measured 

complex power. Normalized power is used because it is strictly 

proportional to admittance, yet yields familiar units. (A 100 W light 

bulb displays a normalized power of about 100 W rather than an 

admittance of 0.0064 Mhoe) 
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Fig. 3-5. Refrigerator transitions as measured. 
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Fig. 3-6. Refrigerator and oil burner as function of time. 
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Fig. 3-7. Refrigerator transitions normalized to 125 V. 

Comparison of Figs. 3-5 and 3-7 reveals, as predicted, that 

admittance clusters more tightly than power. This improvement is 

along the imaginary axis only, however. The real power shows a wide 

variation from transition to transition for reasons unrelated to line 

voltage variations. Temperature and pressure conditions in the 

compressor at start-up are the most likely explanation for the wide 

scatter in the real part of the refrigerator transition admittance. 

Figures 3-8 and 3-9 provide a similar comparison for furnace 

transitions over the same time period. Again, admittance is the more 

tightly clustered signature. The real part of the signature shows a 

greater clustering improvement than for the refrigerator. Much of the 

remaining variation may be attributable to the weakness of the RLC 

model in the case of motors. 
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Fig. 3-8. Oil burner transitions as measured. 
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Fig. 3-9. Oil burner transitions normalized to 125 V. 
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We conclude that admittance (at the fundamental) is superior to 

current or power as a signature component because of its more 

consistent clustering property. Tight clustering of signatures is 

important to reduce the possibility of different appliances having 

overlapping representations, and to allow more appliances to be 

distinguished in the same signature space. The observed clusters are 

still of fairly sizable dimensions, especially considering that the 

RLC model predicts that SSRs will be points of no dimension. Part of 

the remaining scatter is a consequence of the transition-detecting 

algorithm used here, which is described in Section 3.3. Suggestions 

discussed there should improve the clustering. 

3.1.2 Harmonic Currents 

Harmonic currents at each multiple of the fundamental generate an 

infinite sequence of independent signatures which can, in principle, 

be used to distinguish appliances. The third and/or fifth harmonics, 

being relatively sizable in motors, are likely candidates. Figure 3-

10 shows the digitized current waveform measured for an entire 

residence, as described in Section 2.1.4, when the only sizable 

appliance turned on was a 1400 W vacuum cleaner. (The lack of 

smoothness of the curve is a consequence of digitization in the AC 

Monitor and not significant.) Figure 3-11 shows the corresponding 

amplitude spectrum, as calculated by a discrete Fourier transform. 

The fundamental amplitude is almost 16 A; the third harmonic is 3 A; 

the fifth harmonic is less than 1 A. Because only one or two 

harmonics would be used in practice, a simple integration rather than 

a complete DFT would be used to compute them. 

Although the magnitudes of the harmonics are plotted in Fig.3-11, 

they would not be used as signatures because they lack the linearity 

properties discussed in Section 3.1. The magnitude of a harmonic 

resulting from two appliances is not the sum of the individual 

magnitudes unless they happened to have the same phase. Instead, the 

complex amplitude phasor, being linear regardless of phase, would be 

used. 
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Complex harmonic amplitude therefore has many suitable signature 

properties. It suffers from two drawbacks, however. The first is 

that for large appliances harmonics add little information that is not 
available from the admittance at the fundamental. Motors can be 

distinguished from resistive appliances by examining the susceptance. 

The third harmonic does not need to be consulted. Smaller appliances, 

as pointed out in Section 2.1.1, may be distinguished by their 
harmonics. Our first pass through the algorithm-development process 

will not focus on smaller appliances, however. 

The second drawback of harmonic signatures concerns their 

stability and the problem of normalizing them to line-voltage effects. 

It was shown above that power or current at the 60 Hz fundamental can 

be usefully normalized by converting to admittance. It is not clear 

how well this can be done for harmonic current or power. The harmonic 

currents measurable at the service entrance are attributable not only 

to motors or other appliances which generate them, but also to 

resistive appliances which simply "pass through" any line-voltage 

harmonics. In addition, the harmonics generated in motors can be 

expected to vary with line voltage, voltage harmonics, and load. 

These effects may or may not cause serious problems. For now we will 

suspend our consideration of harmonic signatures. 

3.1.3 Transient Currents 

Signatures based on properties of starting transients hold the 

promise that they might distinguish between two appliances which 

appear identical in the steady-state components of the signature 

space. The signature component taxonomy presented in Section 3.1 

lists three types of transient properties which we have considered. 

The classification by type into circuit, mechanical or switched 

transients was presented in Section 2.1.1. The peak value of the 

transient can be fairly consistent for some appliances, as Fig. 3-12 

demonstrates. Here, the real and reactive power drawn by an oil 

burner (furnace) is plotted as it was manually turned ON and OFF five 

times. The real-power spike, over the one-second averages plotted 
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here, ranges from 600 to 750 W. The reactive power varies from O up 

to 150 VARe Other appliances show less consistency. Part of the 

variation may be due to the short duration of the spike causing it to 

be missed or obscured by the one-second averaging process. A hardware 

spike detector (rather than the software method used here) might 

provide more consistent information. To the extent that a spike 

represents the energy required to accelerate the motor shaft, it is 

possible that integrating the area under the power spike might provide 

a more consistent measure than the peak value. 
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Fig. 3-12. Oil burner starting spikes. 

2.6 

Another property of the transient that is worth examining is the 

de current associated with motor starts. Figure 3-13 shows the de 

current measured during the same five furnace starts shown in Fig.3-12 

(The zero offset is a miscalibration effect that can be ignored.) The 

de transient results from the residual magnetism remaining after the 

previous turn-off, and it varies in sign and in magnitude each time 

the motor is turned on. 

EPRI Progress Report Page 50 



~ 

00 
~ 
~ 
~ 

~ z w 
~ 
~ 
~ u 
u 
C 

.s i::----------------------------. 

.25 

0 

-.25 

-.s ~-I-J!.-...A---i-..L.-lb..L....ll.-~-1-.L-J-L...L-IL...L-L..LJ.-L.J.....J-L..J._LJ....,j_LJ._J_.L.J.._L..J._L..L...LJ 
0 .6~ 1.3 

MINUTES 
1.95 

Fig. 3-13. DC current during oil burner starting spikes. 

2.6 

Two other properties of transients which may be useful are the 

duration or, in mechanical transients, the time-constant. 

Although transient signatures hold promise as important dis­

criminators of otherwise similar appliances, they suffer from two 

weaknesses. The first is that they are inconsistent and therefore 

potentially confusing to any clustering algorithm. The second is that 

they give information only about the turn-on event, not the turn-off 

event. If two appliances are both ON which are distinguished only by 

transient properties, the transient can be used to determine the order 

in which they turned ON, but not the order in which they turn OFF. We 

are therefore concentrating on the steady-state signatures, but allow 

for the possibility that it may be valuable to return to transient 

properties at a later time. 

3.2 Sensors 

In this section we review the properties which are desirable in 

the front-end sensors which can provide the primary residence data to 

the final device. 
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Linearity: The sensors should be linear in the sense described 

in Section 3.1. If not linear, they should be nonlinear in a well 

understood way which can be corrected in the software to obtain linear 

signatures. For example, if the sensor measured the log of power, the 

software could exponentiate to obtain the power. 

Response Time: The sensor must have a rapid response to step 

changes in the input. If a large resistive appliance turns on, 

causing a step change in residence power, the sensor should reach a 

steady state very quickly after the power step. Otherwise a 

subsequent transition could become blended in with the first. A fast 

response time would allow two nearly simultaneous signatures to remain 

distinct. The necessary response time is discussed in Section 3.5. 

Repeatability and Precision: In order that SSRs for similar 

appliances not overlap, they should be as small as possible. A sensor 

which possesses a high degree of repeatability is necessary so that 

noise does not dominate the measurements. Noise would cause the SSRs 

to expand beyond their actual nature. 

Low Cost: ----- In order to satisfy the goal that the final device be 

produced at low cost, the sensors can not be unduly expensive. 

digital-sampling 

in Section 2.1.3 

technique 

and the 

of the Digital AC 

appendix has all 

Monitor, 

of these 

The 

described 

properties. Furthermore, it is sufficiently versatile to compute 

admittance, harmonic amplitudes, or virtually any other describable 

signature from the digitized waveforms. We therefore expect that the 

most effective sensors will sample current and voltage waveforms and 

process them numerically. 

3.3 Edge Detection and Spikes 

The detection of residence transitions is a crucial first step in 

the overall algorithm. Time periods in which the residence changes 

EPRI Progress Report Page 52 



from one steady state to another must be identified and the change 

quantified. The method used so far to collect data (for Sections 3 

and 4) is quite simple and can be improved. 

This method requires the specification of a step threshold. The 

threshold used here is 7 W for real power components and 7 VAR for 

reactive power components. The threshold that would be used in the 

final algorithm will depend on the repeatability and precision of the 

sensor device. Each of the separate steady-state signature components 

is sampled repeatedly. The sampling rate will be specified based upon 

a number of factors including processing capacity and sensor time 

constant. The periods used in this paper are one second and one half 

second. Each sample is compared to the sample at the beginning of the 

current steady-state period. If the change in each of the components 

is less than the the corresponding step threshold, then the residence 

is considered to be in the same steady state. If any of the 

components change by an amount exceeding the step threshold, then the 

residence is considered to be in a state of change. Sampling 

continues during the period of change (which could be just two 

samples) until no components change by more than the step threshold 

from one sample to the next. At this point the residence is 

considered to be in a new steady state. The differences in each of 

the signature components from the previous state to the new state are 

appended together to form the steady-state portion of the residence 

transition. The transient components of the transition can then be 

computed individually according to their nature. Duration, for 

example, is determined by counting the length of time the signature 

took to change to the new steady state. 

This edge-detection algorithm passes completely over transients 

in power or other components and waits for steady state to be 

attained. If spike amplitude was desired as a signature component, it 

would be detected with a special variable which is programmed to seek 

out the maximum during the state of change. 
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Because this algorithm is only computing the difference from one 

sample to another, it is susceptible to effects of noise. A future 

algorithm will consider the average value of each component for a 

period just after and just before the transition with the expectation 

that this will result in tighter clustering. We expect that averaging 

out the noise in this manner will tighten clusters such as those of\ 

Figs. 3-7 and 3-9. 

A second problem with this algorithm is that it does not 

recognize the gradual convergence of exponentially decaying 

transients. If a transient gradually approaches a steady-state level, 

this edge-detection algorithm perceives a steady state as soon as the 

sample-to-sample change is less than the step threshold. This could 

be at a power level considerably different from the eventual steady­

state power if the transient continues to decay at a slow rate for 

many samples. A possible solution to this prqblem is to analyze the 

transient type and, if it shows exponential decay, estimate or wait 

for the steady-state value. It is not clear that this is required, 

however. Given an ARS which allows turn-on signatures to differ from 

turn-off signatures, the actual transition which would have been 

measured at the end of the transient is not crucial. All that matters 

is that the simple algorithm consistently finds the power level at 

which the change is less than the step threshold. This signature 

would be learned and used for recognition. 

3.4 Transitions and Noise 

The nature of the nonintrusive algorithm requires that signatures 

be changes in residence variables rather than levels of the variables. 

The total power usage of the residence does not contain much 

information as to exactly which appliances are ON or OFF. Only 

changes in the power level can be used to determine this. For this 

reason the first operation the algorithm performs on residence power 

levels is edge detection to find changes in power. For the most part, 

step changes are sought out because they are characteristic of an 

appliance transition. There are two exceptions to this which we have 
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observed. In one case a ramp rather than a step is the signature. In 

the second, a sequence of steps is present during the extended time 

period in which an appliance is in a certain state, 

the instants at which the appliance changes state. 

interact with the problem of signature noise. 

rather than just 

These two effects 

Figure 3-14 shows power usage of a dishwasher during a single 

wash cycle. No other appliances were ON in the house during this time 

interval. Several components of the dishwasher can be recognized from 

their signatures. The one that is of interest here is the ramp, 

repeated six times, in which the power increases by about 250 W over 

almost two minutes. Note that in the fourth instance, the ramp is 

severed by the turn-off of the heating element. Although this slow 

ramp is a signature highly characteristic of the dishwasher, it is not 

detected by a transition detector because there is no sudden change in 

power. Instead the edge detector will see a sequence of small 

positive steps. Ramps as signatures could be included in the overall. 

algorithm, but they introduce certain complications. One 

complication, visible in this figure, is that of their extended 

duration, which lends itself to overlapped transitions that can be 

complex to break down. We are not sure how common ramps are because 

this is the only appliance we have observed which displays consistent 

ramps. Because of this and the added complication they introduce, our 

first pass through the algorithm development process will not include 

ramps. 

The opposite case from the dishwasher, which changes state 

without a step transition, is the top-loading washing machine, which 

remains in the same /state during a long sequence of step transitions. 

Figure 3-15 shows the power usage during a washing-machine cycle. The 

oscillation of the agitator causes the power usage to jiggle 

constantly during agitation. This appears as small steps increasing 

and decreasing the power level during the entire time the appliance is 

in certain states. Compared to power usage at the 60-Hz fundamental, 

this jiggle is a subharmonic. A similar jiggle can be seen in the 

furnace power trace of Fig. 3-6. Because these small steps are a 
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distinctive steady-state signature for certain states of certain 

appliances, it may be worthwhile to incorporate them in the algorithm 

by keeping a noise-level statistic between major transitions. Changes 

in the noise level can then be used as a signature, but not 

immediately since some time is required to determine the noise 

accurately. This same statistic or a similar one could be used to' 

detect the presence of ramps, which appear as a sequence of small 

transitions with the same sign. The noise level can also be used as a 

dynamic measure of expected accuracy for the next observed transition, 

perhaps even to the point of having the algorithm "give up" and not 

risk the possible errors associated with learning new appliances 

during periods of high noise. 
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Fig. 3~14. Dishwasher power usage. 

62 

Because of these three uses, we expect that the final algorithm 

will keep track of the noise level. This will probably involve 

setting a transition-size threshold for each signature component. 

(This threshold would be larger than the step threshold of Section 

3.3.) Changes which are above the threshold would be used directly by 

the algorithm. Changes below the threshold would be incorporated, 

perhaps with simple average and RMS statistics, to calculate a noise 

level for each interval between the larger transitions. 
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Fig. 3-15. Washing machine power usage. 

3.5 Simultaneous Transitions 

40 

A certain fraction of all residence transitions will be the 

combined effect of two or more appliance transitions occurring 

simultaneously. The precise moment of appliance transitions need not 

be identical for this to happen. It is sufficient that one transition 

start before the transient of a previous transition dies out. As 

discussed in Section 3.1, the steady-state portions of the separate 

appliance transitions add linearly, but the effect on the transient 

components is unpredictable. The steady-state components can there­

fore be used to break down the separate appliance transitions. When a 

residence transition is observed which does not agree with any pre­

viously learned appliance, several actions can be taken. One is to 

try to break down the transition as the sum of two known appliances. 

This strategy is used effectively in the recognition program of 

Section 4 which simply performs an exhaustive search of all pairs of 

appliances. That search is reduced to a small fraction of its 

possible size by only considering the turn-on or turn-off transition 

for each appliance which is compatible with its current state. For 
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example, if the last recognized transition of the refrigerator was a 

turn-on transition, the search does not consider sums of pairs of 

transitions in which one element is another refrigerator turn-on. 

The exhaustive search approach, though effective for a small 

number of appliances, would become computationally expensive if 

hundreds of appliances were modeled. The number of pairs to consider 

would be quite large, though not necessarily prohibitive. 

Fortunately, additional information is available which can reduce or 

eliminate the search. The two simultaneous appliance transitions are 

likely to have corresponding unmatched transitions in the residence 

transition stream, as shown in Fig. 3-16. For example, if two 

appliances happen to turn ON at the same time, they will probably turn 

OFF at different times. A sophisticated recognition algorithm can 

hold on to the unrecognized double turn-on transition until it detects 

the two separate turn-off events. At that point it may note that the 

last recognized transition for each of the appliances was also a turn­

off and that the sum of these three unexpected transitions is zero. 

These conditions together resolve the simultaneous transition. 

I 

TIME 

Fig. 3-16. Transitions due to two appliances turning on 

simultaneously. 

Statistics of the frequency of each pair of appliances changing 

simultaneously would be kept for use by the learning algorithm. If a 

FSM ARS is used, the two separate appliance models could be fused 

together into a more complex FSM if their simultaneous transition 

statistics were higher than normal. 
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Note that the situation shown in Fig. 3-16 is ambiguous in three 

ways. Any one of the three transitions might be broken down into the 

sum of the negatives of the other two. The particular breakdown that 

is appropriate in any situation depends on which two of the three are 

recognized independently as known appliances. More complex breakdowns 

in which three or more appliances change state at once, and several 

simultaneous events must be broken down together, are resolvable in 

principle. A sequence of unrecognized or unmatched transitions which 

sum to zero indicates this situation. However the expense of breaking 

down these complex situations and their relative unlikelyhood make it 

implausible to attempt this. 

One strategy for reducing the likelihood of simultaneous 

transitions is to increase the sampling rate of the edge detector. If 

two appliance transitions happen closely separated in time, there may 

be a short period of steady state between them. An edge detector with 

a rapid sample rate could detect the steady state in cases where an 

edge detector with a slower sampling rate would combine the two 

transitions into a single residence transition. 

There are two limits on the sampling rate. One is simply the 

computational burden it imposes on the overall algorithm. This is 

relatively slight because at each sample all that is required is a 

check of the change in signature compared with the step threshold. If 

the rate is increased, most of the additional samples result in no 

additional transitions for the higher leveled aspects of the algorithm 

to analyze. Those additional transitions which are created by the 

separate detection of two separate appliance transitions when other­

wise only one would have been detected save a great deal of work for 

the higher leveled algorithms because it is no longer necessary to 

separate out the individual transitions. 

The upper bound for sampling is sixty times per second, because 

RMS power is not defined on periods less than a cycle. The real limit 

on the sampling rate is the rate at which the sensor signals can be 

expected to change. If power usage of an appliance showed a true step 
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change at transitions, then very rapid sampling would be justified. 

Measurements show however that most appliances take 0.1 to 1 second to 

reach steady state, and fans and refrigerators may take up to 10 

seconds to stabilize. A sampling rate between two and ten samples per 

second therefore seems reasonable. 

One interaction between sampling rate and spikes should be 

mentioned in this context. The edge detector described above, with a 

fast enough sampling rate, can catch the maximum of a spike as a 

moment of zero derivative and report a transition to steady state. If 

this happened consistently, it would pose no problem to a FSM ARS 

which could model the per_iod of spike as a state. This state would be 

exited immediately by the transition from the end of the spike down to 

steady-state level. A problem arises, however, when the top of the 

spike is detected inconsistently. For any given sample rate there 

will be some spike duration which is sometimes detected as a steady 

state and sometimes not, depending on the relative timing between the 

spike and the measurments. This effect has been observed for a fan by 

the program of Section 4. A branching FSM such as that of Fig. 3-17 

could be used to represent such an appliance. If the edge detector 

caught the top of the spike as steady state, the state SPIKE would be 

entered, then exited. Otherwise, the ON state would be entered 

directly. Other approaches to this problem are of course possible, 

but this method seems the most natural if FSM modeling is available. 

Fig. 3-17. FSM for appliance with inconsistent spike. 
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3.6 Continuously Variable Appliances 

There is a class of appliances which will cause difficulties for 

any nonintrusive algorithm. This is the set of appliances in which 

the power level and other signature components can vary continuously 

as a function of the operator's control. Light dimmers, power tools, 

and ham radios are of this nature. As far as we can see at this 

point, this c~ass of appliances can not be recognized satisfactorily. 

The best we can do is to have a recognition algorithm which can throw 

out time periods in which continuous changes occur. We are continuing 

to consider this problem. 

3.7 Definition of Appliance ON and OFF 

Most discussions of appliance-usage statistics tacitly assume 

that appliances are either ON or OFF. This assumption can fail to 

hold in two different ways. The first is that an appliance can have 

more that one ON state. The second is that there are two distinct 

levels of description to which the terms ON and OFF are appropriate. 

These two topics are taken up in turn. 

The problem of more than one ON state is clarified by the FSM of 

Section 2.2.2. Many appliances can operate in a range of states, all 

of which are considered not OFF. For appliances with more than just 

an ON and OFF state, two solutions are possible to the resulting 

problem of describing the appliance usage. One is to calculate total 

energy usage in any state, and total ON-time in any state other that 

OFF. The second is to calculate energy usage and ON-time in each 

state separately. The choice depends on whether or not the extra data 

provided in a state-by-state breakdown is of sufficient interest to 

load researchers to justify preservation. 

Note that the calculation of total ON-time in any state other 

than OFF requires that the algorithm be able to locate the OFF state 

in the FSM. Generally speaking this is simple to determine. A 

steady-state real and reactive power can be associated with each 
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state, as described in Section 5. The state associated with zero 

power is the OFF state. A complication arises if there is more than 

one such state. The constraint of noncollapsibility, defined in 

Section 5, should eliminate this problem in most cases. The problem 

could still arise in the case of a washing machine, or other 

sequential event appliance, in which there is a waiting state in which 

very little power is drawn. The effect of these states on total ON­

time statistics is slight enough to be ignored. Note that the energy­

related appliance usage statistics do not require the identification 

of the OFF state. 

An appliance can be described as ON or OFF from two points of 

view. To the occupant cooking dinner, the stove is ON from the time 

the switch is turned ON until it is turned OFF. From the standpoint 

of power usage, however, the stove might be cycling thermostatically 

ON and OFF dozens of times in the same time interval, and is actually 

ON for a much shorter period of time than the user knows. It is not 

clear which notion of ON-time is of more use to load researchers. The 

power-related notion is the one which is directly calculable by the 

recognition algorithm. An algorithm might be devised to connect 

together the separate cycles as an estimate of the occupant-related 

ON-time, but it is not clear that this can be determined in principle. 

It is likely that any reasonable algorithm would estimate that the 

refrigerator is always ON. This may or may not agree with the 

occupants perspective. 

Another appliance which is misrepresented by a simple choice of 

only ON and OFF is the instant-picture TV. These TVs draw power even 

when turned OFF to keep the tube filiments warm so they will be ready 

at all times to provide an instant picture. Because only changes in 

appliance state can be recognized, the energy usage in the OFF state 

can not be identified by a nonintrusive device unless the TV is 

frequently plugged in and out. 
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3.8 Appliances wherein OFF is not negative of ON 

In most appliances which we have observed, the transition 

associated with turning ON is not the negative of the transition 

associated with turning OFF. An appliance such as the coffee pot 

discussed in Section 3.1.1 is the exception in which the admittance 

remains constant during operation. Most heating elements, such as 

stoves, ovens and clothes driers, heat up sufficiently to affect their 

resistance. This causes a gradual drop in power within each cycle of 

the appliance. Most large motors also show a drop in power within a 

cycle. (See the discussion of the refrigerator in Section 3.1.1. for 

example.) Here the cau~e may be a combination of an actual power drop 

and the weakness of the edge detector discussed in Section 3.3 in 

which a small but nonzero derivative is considered to be steady state 

before the spike has completely decayed. 

There are several ways in which this can be modeled. In the FSM 

ARS there is no difficulty. A model like the two-state FSM of Fig.2-

17, but allowing two different transitions, would be used. If the SSR 

ARS is used, the regions can be made large enough to include turn-on 

transitions and also the negative of the turn-off transitions. 

Although simple to implement, this is likely to result in unacceptable 

overlap of appliance representaions. A more satisfactory solution 

within the SSR ARS is to allow the recognition algorithm to move the 

region closer to the origin if necessary when considering turn-off 

transitions. (These are easily identified by their negative real 

An approach similar to this is used in the recog-power components.) 

nition algorithm of Section 4. It has the weakness that all 

appliances are treated equally, whether or not their power level 

changes. 

A more complex ARS in which the ON and OFF transitions for each 

appliance can be specified individually is a better solution. If each 

appliance were modeled as two regions of signature space, one for the 

turn-on transition and one for the turn-off, then this effect could be 

handled properly. A constraint on the ARS would be that the regions 
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must be nearly negatives, in a way that could be made precise after 

further examination of appliances. 

3.9 Sequential Event Appliances 

Sequential-event appliances are those like a dishwasher or 

washing maching which automatically pass through a sequence of states 

(e.g., wash, rinse, spin, dry) during a single user cycle. These 

appliances provide a strong argument for the necessity of the FSM ARS. 

Examination of the washing machine cycle of Fig. 3-15 shows that it 

can be modeled as two passes through a six-state cycle. The rinse 

cycle repeats the exact sequence of transitions as the wash cycle. 

The machine which models this is shown in Fig. 3-18. Only five states 

would be necessary if the 100 W transitions were ignored. The dish­

washer of Fig. 3-14 is somewhat more complex because of the ramps and 

the fact that the heater is only ON during certain cycles. We omit an 

FSM for it because of the difficulty introduced by the ramps. 

Fig. 3-18. FSM for washing machine. 

The clothes drier shown in Fig. 3-19 provides another example of 

a sequential-event appliance. Each time the heating element is 

energized, it is introduced by a long spike of the type discussed 

above in which the resistance changes with temperature. The spike 

lasts several seconds and is modeled with a state labeled SPIKE in 

Fig. 3-20. The very first spike is larger because it includes a motor 

start-up load. This spike is represented with the state STARTING 

SPIKE. The transition indicated with the dotted line in Fig. 3-20 is 
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not indicated by the data in Fig. 3-19. This transition would be 

observed if the door of the drier were opened during the heating 

portion of the cycle. As such, it is a special case of a general 
class of transition to OFF which any appliance can take from any state 

if it interrupted in its cycle by opening a door or being unplugged, 

for example. A special provision will have to be made in the 

recognition algorithm to allow for this and to allow resumption in the 

interrupted state if the cycle is continued. 
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Fig. 3-20. FSM for drier. 
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To model a sequential-event appliance without the FSM ARS is 

difficult, but not impossible. In principle these appliances can be 

modeled as a set of independent individual appliances, e.g., the 

motor, the heater and the spike. The difficulty with this approach is 

that often several of these components change states simultaneously. 

For example, when the drier turns ON, the transition would have to be 

analyzed into three simultaneous components. It is not clear that the 

methods of Section 3.6 are capable of doing this consistently. The 

advantage of the FSM approach is that it allows this to be learned and 

represented. 

3.10 Multiple-Speed Appliances 

Like sequential-event appliances, multiple-speed appliances 

support the need for the FSM ARS. The generic HIGH, MEDIUM, LOW 

appliance of Fig. 2-16 is the paradigm for all similar appliances. 

The parameters for specifying such a FSM are the number of states and 

the connections provided by the transitions. Of all the possible 

connectivities imaginable, only three seem to be realized in actual 

appliances. The first we call cyclic. The three-way light of 

Fig. 2-15 is of this type. Each state must be passed in turn before 

returning to any given state. The washing maching FSM of Fig. 3-18 is 

a six-state machine with this connectivity. The second type of con­

nection we call ordered. An example is given in Fig. 3-21. It is 

typified by a multiple-position switch which can be turned forward or 

backward, but can not pass over intermediate states. The final con­

nectivity we have observed in multiple-speed appliances is the fully 

connected type shown in Fig. 2-16. Any state can be entered from any 

other. 

All machines can be considered to be of the fully connected type 

if desired. From this point of view, certain transitions just happen 

not to be traversed. This may be a reasonable way to model all 

appliances but we suspect it will cause too many transitions to be 

under consideration at any given time. One difficulty with fully 

connected appliances is that the storage requirements necessary to 
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represent them increase rapidly with the number of states. For 

example, a push-button blender with seven speeds and OFF state allows 

for 56 transitions. It is not likely that they would all be observed. 

Fig. 3-21. FSM with ordered states. 

3.11 Identical Appliances 

A difficult problem for a nonintrusive appliance load determin­

ation algorithm is the case of two identical appliances. The two 

appliances might be similar, such as two different 1200 W heating 

devices, or they might literally be identical, such as two burners of 

the same size on a stove, or two 100 W light bulbs. In the case of 

similar appliances, the situation may be rectified by the addition of 

additional components to the signature space, but the case of truly 

identical appliances will always remain. They are likely to appear 

identical using any possible signatures. 

The only information that can be determined for the individual 

appliances is of a statistical nature. A record can be kept of how 

often neither is ON, how often one is ON, and how often both are ON. 

During the time that only one is ON, it would not be known which one 

was ON, but it is not clear that this matters. If the SSR ARS is 

used, this information could be kept with the use of a counter for 

each appliance indicating how many instances of that appliance are ON 

at any given time. The count would be incremented when an ON 

transition was detected and decremented after the OFF transition. If 
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the count did not return preiodically to zero, this would indicate a 

problem with the appliance representation. In the FSM ARS, the FSM of 

Fig. 3-21 would serve the same purpose. Each state indicates how many 

instances of the modeled appliance are ON. Statistics would be kept 

which record what fraction of the time is spent in each state. 

From this data, individual appliance statistics could be deter­

mined if the assumption of independence was made. For example, if Fl 

and F2 are the actual fractions of the time that burner 1 and burner 2 

are ON, then the probability that both are ON is Fl*F2, and the 

probability that exactly one of the two is ON is Fl+F2-Fl*F2 if they 

are independent. These two probabilities would be measured, and the 

actual fractions, Fl and F2, could be solved for in a quadratic 

equation. This probably will not be done, however, because the 

directly measured statistics are considered to be sufficient for load 

research purposes and because of the weakness of the assumption of 

independence. 

3.12 Portable Appliances 

Portable 120 V appliances, such as a hair drier or vacuum cleaner 

which is sometimes used in one room and sometimes in another, intro­

duce a special problem to the nonintrusive algorithm. The problem 

occurs when the appliance switches from one leg of the 240 V service 

to the other. The signature then becomes rotated in the signature 

space from one half of the components to the other. This requires a 

special test in the recognition or learning algorithm which checks for 

the leg switch. We expect that the algorithm will start out by 

learning the appliance as two separate appliances. After waiting a 

suffiently long period in which it is noted that both appliances are 

never ON at the same time, the learning algorithm would fuse the two 

models into a single appliance representation which includes a flag 

indicating portability. 

A minor point to note about portable appliances is that their 

measured admittance would vary somewhat according to which branch 
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circuit of the house that the appliance was plugged in to. The admit­

tance of an appliance as measured from outside the house includes the 

resistance of the wiring between the sensor and the appliance. This 

will vary as the appliance is moved, but should not significantly 

affect the representation. These changes ought to be far less than 

the variation due to other causes such as those discussed in the 

connection with the refrigerator in Section 3.1.1. 

3.13 Appliance Evolution 

The set of appliances in a residence can change in two ways. One 

way is that the invent~ry can change. Appliances are purchased and 

discarded. The second way is that particular appliances change their 

properties. In the first case, the learning algorithm will be 

expected to learn that new appliances have been introduced in the same 

way that it learns about any appliance. The decision that an 

appliance has left the inventory is somewhat harder because se~sonal 

appliances may be out of use for almost a year, 

removal of appliances can be handled in three 

and then return. 

ways. They can 

The 

be 

simply removed from the residence model, which would require learning 

them again if they returned. Alternatively, they could be removed 

from the model, but kept around in a list of inactive appliances for 

use by the learning algorithm to speed up the learning process if they 

do re-appear. A third choice is simply never to discard appliances, 

but this approach is not likely to allow the appliance inventory to 

converge properly. 

A particular appliance can change its properties in two ways. A 

sudden discontinuous change, such as happens when something burns out 

or breaks, would be perceived as a change in the appliance inventory. 

The new properties of the appliance could not be related to the pre­

vious model. A second type of change is more gradual; motor bearings 

wear out, for example. This could result in a continuous change of 

the signatures over time. Gradual change of this sort can be followed 

by continuously updating the appliance representation based on changes 

in the recognized transitions.· The program discussed in the next 
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section has the capacity to track these changes. It compares the 

average of the recognized transitions for each appliance to the center 

of the transition SSR. The regions can then be allowed to wander so 
that the center follows the observed center. The need for this 

procedure has not yet been observed, however. 
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4.0 AN APPLIANCE RECOGNITION PROGRAM 

As discussed in Section 2.3, the purpose of an appliance 

recognition program is to calculate the appliance state vector, given 

the residence model and the residence transitions. We have written 

and operated an appliance recognition program which is fairly 

successful according to the criteria of Section 2.6. The program runs 

in real time, in the house of the author, on an HP9845B computer using 

a Digital AC Monitor as a sensor device. 

described in Section 2.1.4. 

The hardware arrangement is 

The program has been given a residence model which consists of 

seventeen appliances. Each appliance is represented by a region of 

the four-dimensional signature space, as described in Section 2.2.1. 

The signature components used are normalized real and reactive power 

on the two legs of the 240 V utility service, measured at a point 

between the kWh meter and the distribution panel. The SSR geometry 

which was selected is that of rectangles (or more precisely, four 

dimensional rectangular hyper-parallelepipeds). It would be a minor 

change to convert the program to use ellipsoidal regions. It would 

not be too difficult to convert the program to use FSM appliance 

representations. 

The appliance representations in the signature space are shown in 

Fig. 4-1. More precisely, Fig. 4-1 collapses the four-dimensional 

signature space into the two-dimensional complex power plane. 120 V 

appliances on the two legs are shown with solid and dotted lines. The 

other leg of each 120 V appliance is modeled as a region of the same 

size, but centered around zero real and reactive power. 240 V 

appliances are shown (using a heavier line) as just one leg. The 

second leg is identical to the first for all the appliances modeled. 

These appliance representations were determined by turning the 

appliances ON and OFF individually and noting the signatures detected 

by the AC Monitor. Note that there is a phase-angle error created in 

the current transformers which provide the input signal to the AC 

Monitor. The transformers are oversized for the application, which 
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results in an output current which leads the input current by a few 

degrees. (The correct current transformers have been ordered but have 

not been installed as of this writing.) This does not disturb the 

algorithm, however, because it is a linear transformation of the. 

signature space as discussed in Section 3.1. (It might cause trouble 

to an identification algorithm, however, if it misidentified some of 

the resistive heaters because of the inaccurately measured nonzero 

reactive power consumption.) 

The operation of the algorithm is sketched in Fig. 4-2. The 

Digital AC Monitor measures the current and voltage at the service 

entrance and continuously calculates real and reactive power on the 

two separate legs. Every half second, the average value of these 

measurements over the half-second period is transmitted to the 

HP984SB. In addition, the average line voltage is transmitted. {The 

half-second period was determined empirically; the HP could not always 

process the transitions at a higher sampling rate when the load was 

active.) The power four-vector is then normalized to 125 V to correct 

for utility line-voltage variations, as described in Section 3.1.1. 

(This is equivalent -to using conductance and susceptance as the signa­

ture components.) This four-vector is then passed through the spike­

passing edge detector described in Section 3.3 to determine the 

residence transitions. The signatures, changes in admittance (or 

normalized power), are then compared with a table which describes the 

regions of Fig. 4-1. If a region is found which includes the 

signature or its negative, then the residence state vector (a list of 

ON or OFF status for each appliance) is updated. If the signature is 

not found, two special checks are performed. One allows the region to 

be expanded temporarily if the appliance was ON and is now turning 

OFF. The other checks if the signature can be the sum of two 

appliance signatures for any combination of the appliances, as 

described in Section 3.5. 
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Fig. 4-3. Output of recognition program. 

The computer CRT displays the status of the appliances, the 

statistics of their usage, and the statistics of the algorithm's 

success. Figure 4-3 is a printout of the CRT display. The notion of 

an appliance cycle is important in interpreting the statistics. The 

algorithm considers an appliance to have cycled when it detects the 

appliance turning OFF, and the most recent previous activity for the 

appliance was to turn ON. The time between the consecutive turn-OFF 

and turn-ON is the cycle time. The top line of the printout indicates 

that the statistics are cumulative over an elapsed time period of 

about three days (69 hours). The bulk of the printout lists 

individual appliance statistics. 

follows: 

The columns are interpreted as 

Appliance: This is the common name of the appliance. Note that 

the program did not determine these names. The 

identification problem has not been attempted. The 

names were specified by the programmer. 
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kWh: 

Correction 

Vector: 

Duration: 

This is the number of times the algorithm determined 

that the appliance turned ON. The actual number of 

times may have been slightly higher if some transitions 

were not properly interpreted due to noise or some 

other problem. Lines with this and other entries blank 

indicate that no activity was detected for that, 

appliance. 

This entry indicates the number of times the 

determined that the appliance turned OFF. 

algorithm 

If the 

program were 100% accurate, this entry would be equal 

to the number of ON transitions. The discrepancies of 

some entries are discussed below. 

This is the total energy used by the appliance during 

observed cycles, in kilowatt-hours. It is calculated 

by multiplying the average power at the center of the 

appropriate rectangle of Fig. 4-1 by the sum of the 

cycle-times for the appliance. 

This is a four-component signature space vector 

could be used to correct the rectangle of Fig. 4-1. 

that 

It 

is calculated by subtracting the center of the 

specified rectangle from the average of the signature 

vectors which were observed for the appliance. Thus, 

if this vector is added to the corresponding SSR, the 

resulting region would be exactly centered on 

observed transitions. This has been calculated 

the intention that in the final algorithm 

correction would be automatically applied to 

the 

with 

the 

track 

drift in appliance properties, as discussed in Section 

3.13. This program does not use it for that purpose; 

it only displays it for informative reasons. 

The average observed cycle time, 

displayed. 

in minutes, is 
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Start: 

% On: 

The start column displays the length of time, in 

seconds, that the peak-passing edge detector took to go 

from steady state before the transition, to steady 

state after the transition. This was examined with the 

intention that it could be a signature component, since 

some appliances would take more time to reach steady­

state than others. It was discarded, however, as being 

too variable within a single appliance when repeated 

turn-ons were observed. 

The final column of Fig. 4-3 displays the percentage of 

the total elapsed time that the appliance was observed 

to be in a cycle. 

Some of the statistics of Fig. 4-3 deserve addressing; the 

appliances are discussed line by line. The refrigerator is by far the 

largest energy user in the house, by almost an order of magnitude. 

The program missed two turn-offs, and hence two cycles, so the actual 

energy use would have been slightly higher. It is not clear why the 

two turn-offs went unrecognized. Perhaps unmodeled appliances, such 

as the dishwasher, washing machine, or lighting, happened to change 

state at the same time. An unmodeled defrost cycle is also a likely 

candidate for explaining the discrepancy. The furnace was recognized 

with complete accuracy; it was ON for 48 cycles, maintaining hot 

water. Although the blow drier was correctly recognized to have one 

cycle per morning during the three-day period, this is partly an 

artifact of the author's use of the appliance. It has four separate 

heat/fan settings, and only the commonly used one is modeled by the 

SSR. If other settings had been used, errors would have occurred. A 

more complex ARS is needed to model this multistate appliance. The 

air conditioner is a similar case. One turn-ON was missed because 

only one of 3 speeds is modeled in the program, and transitions 

through the other operating levels result in recognition errors. The 

two burners of the stove were recognized with high accuracy. The 

single short (4-second) cycle of the large burner is accurate. It was 

turned ON mistakenly and immediately turned OFF. 
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The toaster oven contains two elements which are listed here as 

separate appliances. The controls are such that both elements are ON 

for bake or toast settings, but only the upper one is ON for broil. 

The bake and toast states are therefore good tests for the special 

test in the algorithm that detects simultaneous changes in two 

appliances. Each of the 38 times that the toaster turned ON or OFF , 

resulted in a transition which is not listed in the residence model. 

When this occurs the algorithm tries two special checks, one of which 

is to see if the transition can be the sum of two appliance transi­

tions which happened to occur at the same time. If a unique pair can 

be found, the algorithm updates its tables as if they happened separ­

ately. An exception here is that the start column, which records the 

time required to reach steady state, is not updated because the two 

separate start times can not be determined from the simultaneous 

transition. This accounts for the start entry of zero for the bake 

(lower) element. The top element does have a start entry because it 

was ON twice, on broil, without the lower element. 

Two turn-offs of the iron were missed because the rectangular 

region was not centered properly. The coordinates in Fig. 4-1 were 

measured by quickly turning the iron ON and OFF without giving it time 

to heat up. The turn off of the hot iron is actually from a lower 

power level, due to a resistance change. Note how the first entry in 

the correction vector, a negative power component, indicates that this 

change is required. The first turn-on of the drier was missed because 

it includes the motor start-up and is outside of the region in the 

table. It is not known why the bathroom light and bug zapper turn­

offs were missed; other simultaneous events resulting from unlisted 

appliances is the most likely reason. 

The bottom line of the printout in Fig. 4-3 summarizes the 

program's success statistics. The values shown are typical for 

similar periods in which the program has operated. Of all the 

transitions in which the power components of the two legs summed to 

over 200 W, 94.5% were identified as belonging to one of the seventeen 

appliances. We believe that no misidentifications occurred, although 

EPRI Progress Report Page 78 



this can not be known for certain for some of the appliances. This 

results in a 94.5% transition percentage, according to the method 

described in Section 2.6. Even though the vast majority of 

transitions were identified, only 30.5% of the energy consumed by the 

house was accounted for by the program. This difference is in part 

due to the fact that the Digital AC Monitor and HP9845B computer 

together consume 250 W continuously, which accounts for 28.8% of the 

energy use during the period. The program therefore accounted for 

42.8% of the actual load. Most of the remaining discrepancy is due to 

appliances which are not included in the seventeen listed. 

The entry "39 Pairs" of the statistics line indicates that 

otherwise unrecognized transitions were resolved into two simultaneous 

transitions 39 times. Thirty-eight of these resulted from the 

toaster. The other involved the refrigerator and the small burner. 

The entry 118 Near" indicates that unrecognized transitions were 

accounted for by a second type of special test on eight occasions. 

This test has the effect of somewhat expanding the rectangle. The 

program allows a rectangle to be expanded by 10% to account for 

occasional "noise." The noise is expected to be the simultaneous 

transition of a small, unmodeled appliance. When an unrecognized 

transition occurs, the algorithm checks if the appliance in the signa­

ture space which is closest to the observed transition (using the 

Euclidean metric) is in the ON state. If so, then the algorithm 

allows the rectangle to be expanded by up to 50%. This is motivated 

by the observation that if there is good evidence of a large appliance 

being ON and a similar but unrecognized large appliance going OFF, 

then it is likely to be the same appliance with noise added. 

To conclude this section, we note that accuracy statistics over 

90% are quite typical for the multiday time periods during which this 

program has operated. The percent of recognized transitions would 

have been higher if the unmodeled washing machine and dishwasher had 

been left idle during the period. 
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5.0 CONSTRAINTS ON THE FINITE STATE MACHINE APPLIANCE REPRESENTATION 

SYSTEM 

The FSM ARS presented in Section 2.2.2 has too much descriptive 

power to be applied in the non-intrusive appliance load data 

acquisition algorithm. This section gives several examples 

demonstrating the problems that arise, and then suggests some 

reasonable constraints which do not limit the applicability of the 

system to practical appliances. There are two ways in which an ARS 

can be demonstrated to be underconstrained. The first way is that it 

can be underconstrained in principle. The second is that it can be 

underconstrained in practice. To show tht the ARS is underconstrained 

in principle, we show that it is ambiguous. By this we mean that two 

distinct models of the household appliance inventory can always be 

given which are indistinuishable from any data available at the 

service entrance. This section presents a series of counter-examples 

and arguments which show that that the FSM ARS is underconstrained in 

principle. The ideal situation would be to be able to prove that some 

set of constraints, such as those presented below, were sufficient so 

that only one set of FSMs could describe any given residence, and that 

any other set would be invalidated by the residence transitions given 

enough time. Such a proof is not yet at hand. 

Even after constraints are developed which reduce the FSM ARS to 

an ARS that is no longer underconstrained in principle, it is likely 

that it would still allow too many possibilities for any learning 

algorithm. If this occurs, then we say that the ARS is undercon­

strained in practice, although it is not clear that it will occur or 

that we could prove it to be the case if it did. In this case, 

additional constraints would have to be proffered in order that an 

algorithm could be developed. As an example of such constraints, this 

section ends with a highly constrained sample FSM ARS which only 

allows a small number of state connection topologies. Further 

constraints of this nature are not considered here, as we have not 

reached a point in either the constraining of the FSM ARS or in the 

development of learning algorithms where it need be considered. 
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A simple example which shows that the FSM ARS is underconstrained 

in principle is the one-state FSM of Fig. 5-1. This FSM models the 

entire residence as a single appliance which is always ON. Any 

observed transition leads the appliance back to the ON state. This 

model will always fit the data in a trivial manner. There are many 

ways in which the ARS could be constrained so that this is not a valid 

appliance model. One approach is to put a maximum on the number of 

transitions which can enter or leave any state or to set a maximum 

total number of transitions for any single appliance. These con­

straints do not get to the essential difficulty with Fig. 5-1; 

however, such methods may be necessary at some point to eliminate 

problems in which an ARS is underconstrained in practice. A 

reasonable constraint to impose on the FSM ARS is that no transition 

lead from any state back to the same state. This is reasonable 

because if a signature is worth noting, it must be because the 

appliance changed state. If the appliance does not change state, the 

signature can be ignored. 

+30 

+IQ 

0 

-30 

Fig. 5-1. One-state whole-house FSM. 
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A second constraint which would just as easily eliminate the FSM 

of Fig. 5-1 is to require that every FSM contain at least two states. 

This is reasonable because if the appliance can not change from one 

state to another, then it can produce no signature worthy of note and 

would not be detected. This is not to say that there can not be an 

appliance which exhibits only one state. A doorbell transformer might 

be wired so that it is never OFF. However, the properties of such 

appliances can not be determined by a nonintrusive algorithm. 

A second example which demonstrates the need for a constraint in 

principle is given in Fig. 5-2. In this example, every observed 

transition from the time the algorithm begins creates an additional 

state. This one appliance models the entire house, which is always in 

the most recently created state. This FSM can be eliminated in 

practice by setting a maximum number of states that one FSM can 

contain. (This does not solve the problem, however, because when the 

maximum number of states was reached, a second appliance could be 

created, leaving the first appliance in its last state, then a third, 

and so on. A practical limit on the number of appliances would stop 

this eventually, but this does not get to the heart of the problem.) 

A reasonable constraint which would eliminate this from the ARS is to 

require that all appliance models be fully traversable. We define 

this to mean that there be a path of transitions from any state of any 

appliance model to every other state of that model. As a consequence 

of this definition, there can be no dead ends or unbounded open 

chains, and every state must have at least one exit and one entrance. 

This definition also implies the existence of circuits through every 

state. A circuit is a path of transitions starting at one state, 

proceeding through other states, and returning (for the first time) to 

the starting state. 
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Fig. 5-2. Infinite chain FSM. 

The next constraint which we present concerns zero-vectors as 

transition signatures. Consider any transition in any FSM, such as 

the one labeled X, between states A and Bin the left-hand side of 

Fig. 5-3. Such a transition can always be replaced with two 

transitions and an intervening state. The transition X becomes the 

sequence 0, A', X in the right-hand side of this example. From the 

point of view of a recognition algorithm, these two FSMs are indis­

tinguishable, because the zero-vector transition can always be 

located. As this would result in an unacceptable ambiguity, we 

conclude that zero-vectors as transition signatures must be eliminated 

in principle. This is a perfectly reasonable constraint given the 

purpose of the FSM representation. If no signature was detected, then 

there is no reason to conclude that any appliance changed its state. 

If we label the transitions with regions of signature space, rather 

than single points, then the constraint is that the region can not 

contain the zero vector. 

Original: Expanded: 

.... 

.... 

Fig. 5-3. Zero-vector expansion of transition X. 

EPRI Progress Report Page 83 



We next consider the example of Fig. 5-4, which is analogous to 

Fig. 5-1, but contains two states~ This one appliance FSM can 

trivially model an entire appliance inventory. The FSM simply alter­

nates between the two states. No constraint presented so far 

eliminates this FSM, so an additional constraint is necessary. To 

develop this constraint, we first consider the subspace of the signa- , 

ture vector-space which contains only the steady-state components, as 

defined in Section 3.1. Real and reactive power are examples of 

components that could be in this subspace. Although it is not stated 

explicitly in the FSM diagram, we can associate with each state of an 

appliance model a power level which the appliance draws when operating 

in that state. Most, ~ut not all, appliances have a state we would 

label OFF in which the power level is zero. Any transition out of the 

OFF state is accompanied by a signature in which the power component 

increases to the level associated with the state that is entered. In 

general, the power component of a transition is equal to the 

difference between the power components of the operating levels of the 

two associated states. 

+30 

+30 

Fig. 5-4. Two-state whole-house FSM. 
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Generalizing further, we associate with each state of an FSM an 

operating level which is a point in the steady-state subspace of the 

signature space. The projection of any transition signature into this 

subspace is then the difference between the operating levels of the 

state entered and the state left. This difference operation is the 

discrete analog to the continuous process of taking the gradient of a 

scalar potential. It results in a path-independent conservative law 

for the transition vectors, analogous to Kirchhoff's law of voltages 

around circuit paths. The projection into the steady-state subspace 

of the ~ of the transition signatures around any circuit of any 

appliance model is~- This constraint eliminates the two-state 

whole-house FSM of Fig .. S-4 from our ARS. 

In reality the situation is not quite as clear-cut as the above 

paragraph indicates. One complication arises from the fact that SSRs, 

rather than points, should label the transitions. This results in the 

much weaker constraint that the circuit-sum be a region around zero, 

rather than zero exactly. To be useful, we would like to keep the 

region as small as possible. A second complication is that we might 

want a state to represent a range of operating levels, as in the case 

of the appliances discussed in Section 3.8 in which the OFF to ON 

transition is not the negative of the ON to OFF transition. This will 

also require a loosening of the zero criterion. 

a problem here. 

Ramps also introduce 

The next constraint which we propose involves notions of 

expanding and collapsing FSMs. Any FSM can be expanded in an infinite 

number of ways into more complex FSMs which accept the same set of 

transitions. For example the two-state FSM of Fig. 5-Sa can expanded 

into the six-state FSM of Fig. 5-Sb. In this case the FSM has been 

tripled. The general process involves repeating the FSM a given 

number of times and then permuting the transitions between the 

repeated FSMs. Figure 5-6 demonstrates the general expansion process. 

The arbitrarily selected FSM of Fig. 5-6a has been repeated three 

times in Fig. 5-6b. The transitions can then be permuted in many 

ways; one is given in Fig. 5-6c. 
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Original: Expanded: 

Fig. 5-5. Six-state expansion of two-state FSM. 

A: B: C: 

Fig. 5-6. Example of generalized expansion process. 
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We call the inverse procedure to expansion collapsing an FSM. If 

expansions of FSMs were allowed in the residence model, then the 

resulting ambiguity would cause the ARS to be underconstrained in 

principle. We therefore require that all FSMs not be collapsible. We 

note in passing that an algorithm for collapsing an expanded FSM is 

straightforward. 

The final constraint which we propose here requires the develop­

ment of an algebra of FSMs and a notion of prime and composite FSMs. 

Consider the two separate appliances of Fig. 5-7. The appliance 

models, which we call F and G, have two and three states, 

respectively. A residence model with these two separate FSMs is 

equivalent in terms of signature transitions to a model with the 

single six-state FSM of Fig. 5-8. We define the FSM of Fig. 5-8 to be 

the product of the FSMs F and G. Although formally simple, it is not 

necessary to present the general definition of FSM product here. It 

should be clear that the product of F and G has one state for each 

pair of states, one from F and one from G. The transitions of the 

product are merely the transitions of the factors, repeated as many 

times as there are states in the other factor. Composite FSMs can 

always be laid out on a rectangular grid such as Fig. 5-8 with no 

"diagonal" 

introduce 

constraint 

ARS. 

transitions. To remove the ambiguity that product FSMs 

in an appliance inventory, we require in principle the 

that all FSMs be prime, i.e., not factorable within the 

We note in passing that the factoring of composite FSMs is compu­

tationally straightforward. If a composite FSM were detected, it 

could be factored into FSMs for the independent appliances which it 

represents. The factoring operation could also be used in the break­

down approach to the learning problem described above in Section 2.4. 
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F: 
G: 

Fig. 5-7. FSMs for appliances F and G. 

Fig. 5-8. FSM product of F and G. 

We summarize now the constraints in principle which 

presented for restricting the FSM ARS. Note that all the 

have been 

appliance 

models presented in Sections 3 and 2.2.2 satisfy these criteria. 

• No transition can begin and terminate at the same state, 

(This is now derivable from other constraints). 

• Each FSM must contain at least two states. 

• Every FSM must be fully traversable. 
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• No transition signature can be the zero-vector (or a region 

which contains the zero vector). 

• The projection into the steady-state subspace of the sum of 

the transition signatures about any circuit is the zero­

vector (or a region which contains the zero-vector). 

• No FSM can be collapsible. 

• All FSMs must be prime in the ARS. 

It is not clear at this juncture exactly how constraints of this 

sort would be implemented in the learning algorithm. Most likely, 

they would not be stored as constraints and used as "filters" to 

eliminate hypothesized .FSMs created by the algorithm. Instead, it 

would be much more effective to have the structure of the algorithm be 

such that it could only generate FSMs which satisfy the constraints. 

In addition, practical constraints limiting the number of states, 

transitions and appliances will be required by the finite memory of 

any physical computer, and should be useful for eliminating unwieldly 

residence models. 

As an example of a highly constrained FSM ARS which may be of 

practical value, we are considering the set of seven FSMs in Fig. 5-9. 

A set like this, which includes the two-state FSM and three transition 

topologies for FSMs with between three and some small fixed number of 

states, should be sufficient for most appliances. (The three 

transition topologies were presented in Section 3.10.) The transition 

signatures would have to be restricted so that the above constraints 

hold. The actual utility of this set will only be determined by 

experiment. To be of value, a learning algorithm must be developed 

which can not only handle appliances which fit these templates, but in 

addition, is not adversely affected by the existance of appliances 

which do not fit. 
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Fig. 5-9. Highly constrained FSM ARS allowing seven arrangements. 
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6.0 APPLIANCE USAGE DATA MARGINAL VALUE 

Any nonintrusive appliance monitoring method is certain to fail 

for appliances below some size threshold. This is a consequence of 

the proliferation of appliances at low power levels and problems of 

measurement and noise. The exact level at which a method fails (for 

any given residential appliance mix) will depend upon details of the 

algorithm. Additional effort may improve an algorithm to identify a 

wider range of appliances. The decision to expend this extra effort 

requires some knowledge of the value of the additional data that may 

be collected. 

To approach this question, we look at the annual energy 

consumption of typical household appliances compared with their 

operating power usage. Table 6-1 lists this data for 70 appliances as 

calculated from data in References 1 and 2. The first column of 

numbers contains the operating power usage for a typical instance of 

the appliance type. When interpreting this data, it must be noted 

that individual appliances will vary widely from this data. In the 

case with appliances with more than one ON state, the entry is 

generally the maximum power usage. For most appliances there is only 

one ON state, so the given power level is equal to the size of the 

power transition which must be detected in order to recognize the 

appliance state changes. The second column of the table gives the 

average energy consumption on an annual basis for a single instance of 

the appliance; particular residences will vary from this average, of 

course. This data is presented in graphical form in Figure 6-1. 

(Only appliances which consume over 0.5 kWh/day are labeled.) 
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Table 6-1 Appliance Power Usage and Energy Consumption 

APPLIANCE 

Electric Heating 
Electric Range and Oven. 
Separate Oven 
Heat Pump 
Electric Clothes Dryer 
Water Heater (Quick) 
Central Air Conditioner 
Cooktop Range 
Electric Water Heater 
Fondue Set/Wok 
Portable Heater 
Popcorn Popper 
Dishwasher 
Toaster Oven 
Waffle Iron 
Coffeepot 
Griddle 
Skillet 
Toaster 
Broiler/Roaster 
Swimming Pool Pump 
Microwave Oven 
Room Air Conditioner 
Food Grinder 
Stationary Metal Working 
Vacuum Sweeper 
Hair Dryer 
Portable Woodworking 
Clothes Washer 
Garbage Disposal 
Decorative Lights 
Trash Compactor 
Refrigerator/Freezer 
Attic/Exhaust Fan 
Garden Tools 
Slide/Movie Projector 
Blender 
Hot Tray 

POWER 
(Watts) 

25000. 
12200 
7800 
5000 
4856 
4474 
3600 
3600 
2475 
1448 
1322 
1250 
1201 
1200 
1200 
1200 
1196 
1196 
1146 
1140 
1008 
1000 
860 
720 
696 
630 
600 
556 
512 
445 
400 
400 
375 
370 
360 
360 
300 
300 

ENERGY EACH ENERGY/RESIDENCE 
(kWh/Day) (kWh/Day) U.S. Avg 

18.03 
1. 74 
0.74 

32.39 
2.83 

13.18 
5.88 
1.00 

11.56 
0.23 
0.48 
0.00 
0. 71 
a.so 
0.06 
0.38 
0.27 
0.27 
0.11 
0.23 
5.50 
0.73 
1. 71 
0.06 
0.00 
0.13 
0.07 
0.02 
0.24 
0.02 
0.07 
0.14 
4.15 
0.80 
0.00 
0.01 

.00 
0.04 

2.698 
0.579 
0.093 
3.263 
1.219 
1. 713 
1.540 
0.120 
1.502 
0.013 
0.133 
0.000 
0.284 
0.108 
0.018 
0.287 
0.028 
0.153 
0.096 
0.043 
0.238 
0.028 
1.129 
0.003 
0.000 
0.153 
0.040 
0.028 
0.210 
0.001 
0.017 
0.001 
4.464 
0.449 
0.000 
0.003 
0.002 
0.007 
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Table 6-1 Continued 

APPLIANCE POWER ENERGY EACH ENERGY/RESIDENCE 
(Watts) (kWh/Day) (kWh/Day) U.S. Avg 

Sun Lamp 279 0.04 0.004 
Humidifier/Dehumidifier 217 0.74 0.250 
Freezer 200 3.58 1.361 
Garage Door Openner 200 .00 .000 
Crockpot 200 0.10 0.032 
Vaporizer 177 0.45 0.142 
Electric Blanket 177 0.40 0.151 
Refrigerator 170 3.60 0.363 
Flood Lights - Manual 150 0.03 0.014 
Color TV 145 2.18 2.044 
Mixer - Regular 127 0.01 0.002 
Mixer - Portable 127 0.01 0.003 
Home Entertainment Ctr. 109 0.30 0.022 
Console Stereo, HI FI 109 0.30 0.245 
Black and White TV 100 1.26 1.053 
Electric Knife 92 0.02 0.009 
Portable Fan 88 0.12 0.091 
Other Shop Tools 85 0.00 0.000 
Electric Lighting 75 2.52 2.520 
Sewing Machine 75 0.03 0.021 
Table Radio 71 0.24 0.361 
Heating Pad 65 0.03 0.002 
Juicer 60 0.00 0.000 
Massager/Vibrator 40 0.01 .000 
Curling Iron 40 0.00 0.000 
Knife Sharpener 25 0.00 0.000 
Opener/Sharpener 25 0.00 0.000 
Tape Deck 25 0.00 0.000 
Can Opener 25 0.00 0.000 
Shaver 15 .00 .000 
Electric Clock 2 0.05 0.100 
Toothbrush 1.1 .00 .000 
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Fig. 6-1. Appliance annual energy consumption vs. power usage. 



In order to use this data meaningfully, the energy consumption 

must be weighted according to how many of each appliance are found in 

the average U.S. residence. The third column of Table 6-1 specifies 

the annual average energy consumption of each appliance weighted 

(multiplied) by the average number of appliances per household in the 

United States. For example, the first appliance entry, electric heat, 

typically uses 25 kW when turned on. In the average house with 

electric heat, 18.03 kWh/day is consumed by the heater as an annual 

average. Because only 15% of U.S. houses have electric heating, it 

accounts for 2.698 kWh/day in the average U.S. house. In some cases 

(e.g., refrigerator/freezer and table radio), the average house has 

more than one instance of the appliance, so the U.S. average energy 

consumption per residence is greater than the energy consumption per 

appliance. 

A comparison of the first and third columns of Table 6-1 can be 

used to estimate the portion of the U.S. residential electric 

consumption which can be identified by a nonintrusive method. 

estimate is based on the assumption that the limiting factor 

ultimately prevents identification is the size of the 

energy 

This 

which 

power 

transitions that can be recognized. For example, the total energy 

which can be identified if all transitions over 200 Ware recognized 

is the sum of the energy consumption of all appliances with power 

usage greater than 200 W. This turns out to be slightly over 70 % of 

the total based on the data in Table 6-1. Figure 6-2 presents this 

energy vs. power relationship in a cumulative form. The abscissa 

ranges over appliance operating power levels. The ordinate indicates 

the percentage of the total annual residential energy usage which is 

consumed by appliances equal to or larger in size than the abscissa. 

From this we see that if the nonintrusive method can be refined to the 

point where it includes lighting (plotted at 75 W), then on the 

average, 98% of residential energy usage could be accounted for. The 

relative steepness of the curve between O and 200 W suggests that the 

use of current harmonic signatures for the recognition of smaller 

appliances may be worth the effort (see Section 3.1.2). 
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Fig. 6-2. Effect of minimum power threshold on identifiable energy. 

Although this analysis suggests that a large fraction of the total 

energy is identifiable, this contrasts with the results of the case 

study presented in Section 4, in which less than 50% of the energy was 

identified. The difference is attributable to weaknesses of that 

algorithm, the small number of appliances considered in Section 4, and 

differences between the particular appliance inventory and usage 

patterns of the residence and the U.S. average. 

References: 

[l] Statistical Abstract of United States, 1982-1983, Number 1359, 

p. 758. 

[2] "Annual Energy Requirements of Household Electrical Appliances," 

Edison Electrical Institute, Report #75-61. 
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APPENDIX. Extracts of Digital AC Monitor Operating Manual* 

I. Introduction 

A general purpose Digital AC Monitor with the 

capabilities and features has bee~ developed. 
following 

1. Continuous "simultaneous" measurement of up to 8 AC 
circuits. 

2. Measure~ RMS voltage, RMS current, real power, reactive 

power, apparent power, power factor, frequency, harmonic 

distortion, load impedance and admittance, de voltage, de 

current. It can also separate the real and reactive power 

flows into or out of a circuit,. analogously to ratcheted 

Kilowatthour and Kilovarhour meters. 
3. Full programmability. Any combination of measurements can 

be taken on any sets of input circuits independently. 

4. Programming and output is in ASCII characters over a 

standard RS-232 line at speeds up to 19200 baud. Baud rate, 

parity, stop bits and character echo are switch selectable. 

5. Output is directly readable in engineering units (volts, 

amperes, watts, hertz .•• ). 
6. The AC Monitor can be used as a data logger or test 

instrument by connecting it with a computer terminal, or it 

can be used as a sensor peripheral to any computer equipped 

with a serial RS-232 port. 
7. It can output digitized current and voltage waveforms 

showing 64 samples per cycle from which "oscilliscope 

tracings" of current and voltage waveforms can be 

reconstructed by the user's software. 
8. It can be programmed·to output either automatically at 

intervals, or when polled by the user. 
9. It can be programmed either to output sampled values of the 

inputs or averaged values, over periods of up to 18 hours. 

The AC Monitor is designed to be a flexible instrument which is 

cost effective in a wide range of applications where 60-Hz ac circuits 

are to be instrumented and the results interfaced to a computer for 

data acquisition or control purposes. It is designed to function as a 

data acquisition system, replacing analog transducers and a data 

logger. Although the monitor was designed with photovoltaic power 

systems in mind, it is an instrument of far wider applicability. 

* Additional information is available from the MIT Energy Laboratory. 
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VIII. Method 

Figure 4 shows a block diagram of the information flow through 
the essential parts of the AC Monitor. The analog to digital 
converter (A/D) can measure any one of the sixteen inputs via the 
multiplexer. The microprocessor controls which inputs are sampled, 
and what calculations are made, in accordance with the instructions it 
receives over the RS-232 interface. It also transmits it outputs via 
the RS-232 line. 

For each circuit for which any measurement commands (other than 
frequency) were given, the voltage input and the current input are 
each sampled with the eight-bit A/D sixty-four times during a one­
sixtiet~ of a second cycle. A single A/D converter is used, sampling 
alternately between the current and voltage inputs at a rate of 7680 
samples (2 * 64 * 60) per second. One extra current reading is taken 
so that there is a current value spaced equally before and after each 
voltage reading. The digitized values range from -127 to +127. In 
the formulas below, V and I represent these individual A/D readings. 
An A/Dreading must be multiplied by a conversion constant, C, to 
obtain the actual input voltage. 

C = 
5 

128 

The de voltage (and current) is calculated by simply averaging 
the 64 sampled values. 

VD = [-t] AVG I z: V I 
The function, AVG { ... } represents the averaging which occurs between 
outputs. The part of the computation between the braces is performed 
repeatedly (as each cycle is measured). When it is time to output 
results, the average of these computations is determined and 
multiplied by the conversion constant in the brackets to determine the 
average de voltage in units of volts. This is then converted to 
decimal and output. 

The RMS voltage is computed as: 

VR = [;] AVG I JiY \ 
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Note that this results in a true RMS reading, whatever the waveform 

shape, taking into account thirty harmonics. The RMS current is 

similar. It uses only sixty-four of the sixty-five sampled values. 

To compute the power, an integial of I*V is performed. The 

current value at a time synchronous with any voltage value can be 

approximated by averaging the current values immediately preceding it 

and following it. The division by two required in the averaging is 

factored out sb power is computed as: 

AVG \ '°'v. ( r. 1 + L.-J 1 1-~ I.+1 1 ~ 

Note that in the presence of harmonic distortion this gives the total 

real power at all frequencies (up to the thirtieth harmonic). 

Power into a 
treating negative 

+ function, f , by 

Then 

circuit 
powers as 

is calculated from the 
zero. We define a 

if x>O 

if x<=O I 
Power out of a circuit is computed at output-time as 

PO= PI - PR 

real power by 
positive power 

Although this is computed all at once, it gives the same results as if 

it were computed by averaging only the negative values of power: 

PO= AVG If+ (-PR) I 
Note that if power flows into the circuit during part of the averaging 

period, and out of the circuit during other parts of the period, the 

following results hold: 

PI> 0 

PO> 0 

PR= PI - PO 
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Reactive power is calculated analogously to real power, integrat­
ing the product of the voltage and the current 90° (16 samples) later: 

where the sub$cript calculations are perf?rmed modulo 64. 

This gives the r~active power at sixty hertz according to most 
definitions, but note that by some definitions this is not the 
reactive power if harmonic distortion is present. Reactive power into 
and out of the circuit are completely analogous to real power: 

RI = AVG I f+(RP) l 
RO= RI - RP 

Frequency is computed by timing three consecutive voltage wave­
form cycles, starting and stopping at upward zero crossings. The 
algorithm requires that the voltage signal at the AC Monitor have an 
amplitude of at least 0.5 volts. If no signal is present, or the 
signal has too small an amplitude, or if the frequency is out of 
the 40-80 Hz range, a value of zero is output. 

3 
FR= 

AVG { Period of 3 cycles} 

Total harmonic distortion.of a current or voltage waveform is 
calculated by first computing the RMS value of the 60 Hz fundamental, 
A , using Fourier integrals, and then "subtracting it out" from the 
R~g value of the waveform, ARMS" It is then normalized to the fundamental, 
and multiplied by 100 to give a percentage. The calculations are 
equivalent to the following: 

2 
A2 = ---

60 642 

THD··= AVG 100 
A

2

RMS - A
2

60 

A\o 
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The calculated THD has a limited range of accuracy because the analog 
to digital converter only attains eight-bit resolution. The measured 
waveforms are digitized to the nearest 1% so distortion less than one 
percent can not be accurately determined. The minimum accurate THD 
percentage increases as the waveform amplitude decreases because the 
digitization step becomes a larger percentage of the RMS value, so it 
is important that the input signal be scaled to between 3 and 3.5 V 
RMS if THD is to be measured. 

The six derived quantities are calculated based on the averaged 
values of RMS ~oltage, RMS current, real power, and reactive power. 
The following formulas use the abbreviations given in Table I. 

Apparent power AP = IR * VR 

Power Factor PF = PR /(IR* VR) 

Resistance ZR = PR I IR 2 

Reactance zx = RP I IR 2 

Conductance YG = PR I VR2 

Susceptance YB = - RP I VR2 

Note that these formulas are only valid for sinusoidal voltages and 
currents. In the presence of harmonics, for example, the calculated 
impedance and admittance might not be reciprocals. 

The standard sign convention is followed throughout. An 
inductive load will be reported to consume a positive reactive power, 
and will have a positive impedance angle. This assumes of course that 
consistent input polarity was observed, as described in Section III. 
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Table I Measurement Summary 

.Command Output Derived Min Max Scale 
Measurement Characters Units - Quantity Value Value Factor 

DC Voltage VD Volts no -4.96 4.96 V 
DC Current ID Amperes no -4.96 4.96 I 
RMS Voltage VR Volts no 0 4.96 V 
RMS Current IR Amperes no 0 4.96 I 
Real Power PR Watts no -24.6 24.6 VI 

"" Into circuit PI Watts no 0 24.6 VI 
"" Out of circuit PO Watts no 0 24.6 VI 

Reactive Power RP Vars no -24.6 24.6 VI 
"" Into circuit RI Vars no 0 24.6 VI 
"" Out of circuit RO Vars no 0 24.6 VI 

Apparent Power AP Volt Amperes YES 0 24.6 VI 
Power Factor PF Dimensionless YES -1 1 none 
Load Resistance ZR Ohms YES -25 25 V/I 
Load Reactance zx Ohms YES -25 25 V/I 
Load Conductance YG Mhos YES -25 25 I/V 
Load Susceptance YB Mhos YES -25 25 I/V 
THD of Voltage VH Percent no 1 100 none 
THD of Current IH Percent no 1 100 none 
Frequency FR Hertz no 40 80 none 
Voltage Waveform vw Hexadecimal no -127 12i~ SV/128 
Current Waveform IW Hexadecimal no -127 127 5V/128 

➔~ 

Note that a voltage or current waveform maximum value of 127 
analog-to-digital-converter-counts is reported as a hexadecimal 
value 7F which corresponds to 4.96 volts input. Similarly, -127 
counts is 81 hex, corresponding to -4.96 volts input. 
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