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Abstract—Understanding how appliances consume power is
important for energy conservation. Non-intrusive load monitoring
(NILM) helps meeting energy conservation goals by inferring
individual appliance power usage from a single measurement.
By using additional, readily available, sensor information such
as weather data, it is possible to improve the accuracy of NILM.
In this paper we present an example case of disaggregating
two appliances using a recurrent neural network, and show
how the use of multisensory data (weather and power) as
an input improves performance. We demonstrate the system
on a Raspberry Pi — a cost-efficient platform with limited
computational capabilities.
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I. PROTOTYPE DESCRIPTION

Non-intrusive load monitoring (NILM) [?] traditionally uses
the aggregate power meter as the only sensor. Multisensory
NILM can help improve the accuracy of appliance usage de-
tection. In order to demonstrate the usefulness of multisensory
data for NILM, we compare the performance of two neural
networks on readings from two sub-meters taken from the
AMPds2 [?] dataset. Both networks are hybrid recurrent neural
networks, which output both an estimated total power and a
simplified ON/OFF state classification, for each appliance. A
detailed schematic of the architecture is presented in Fig. ??.

One network will use only the total power as an input,
while the other will also incorporate temperature readings.
Training, validation, and testing were all performed on a subset
of the data from the AMPds2 [?] dataset. In AMPds2, power
readings are taken from a central meter as well as 20 sub-
meters in one house over two years. In order to simplify
the problem, we take only two of the sub-meters (HPE and
OFE) and manually add them to create the aggregated power
signal. These two sub-meters were selected because they have
opposite correlation with the temperature measurement while
almost no correlation with each other. Training was done on
the first 600 days of measurement (500 for training, 100 for
validation) and testing was performed on the following 100
days. Training was limited to 100 epochs or until validation
loss plateaued. After training, the weights of both networks
were loaded on to a Raspberry Pi 3 computer (model B V1.2),
which runs each network and performs power disaggregation
faster than real-time, presenting dynamically updating graphs
of both appliances and their comparison to ground truth data.
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Having both the classification and total power estimate at
the output allows us to compare the two networks using both
the F-score and Estimation Accuracy [?]. As seen in Table ??,
the inclusion of temperature in the input data improves the
performance in both metrics, especially for OFE.

TABLE I
F1-SCORE AND ESTIMATION ACCURACY RESULTS
Input Sub-meter | F1-Score | Est Acc

HPE 0.9997 0.966
Power OFE 0.790 0.535
Overall 0.865 0.912
HPE 0.9996 0.976
Power + Temperature OFE 0.847 0.688
Overall 0.903 0.939
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Fig. 1. Network architecture
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