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Abstract—Research has shown that small changes in behavior in how we use 
our homes can result in substantial energy and water savings. Home 
automation and the integration of computational intelligence capabilities in the 
“smart home” are often cited as promising advances in the design and 
renovation of efficient buildings. However, the design and implementation of 
such technologies are largely based on energy-use simulations, smart 
automation of the building systems, and components for optimal performance 
rather than on effectively supporting how people use their homes. Additional 
factors, including system complexity and awkward automation, can discourage 
acceptance of smart home technologies. In this article, the authors propose that 
technological support for sustainable home use lies in more subtle and 
contextually appropriate interventions that integrate more informative models of 
occupant behavior, provide hybrid levels of automated control, and use ambient 
sensing for localized decisions. They discuss several cases from their 
experience in designing sustainable home systems and describe two current 
design cases for ambient intelligence in home control. 

Keywords: smart home; ambient intelligence; adaptive lighting; adaptive HVAC, 
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A sustainable home is more than a green building; it’s a living experience that encourages occupants to use 
resources more effectively. Research has shown that small changes in behavior—such as turning off lights, 
changing the thermostat, or shortening showers—can result in substantial energy and water savings.1 But 
changing how occupants use these resources is challenging. 

Combining ubiquitous computing and computational intelligence offers an opportunity to help 
occupants dynamically interact with building technologies for feedback and control regarding performance 
and atmosphere while empowering them as agents of behavioral change. These technologies and patterns of 
use are the focus of recent design research,2–6 but sustainable home design is still in its infancy. We know 
very little about how to design, situate, and integrate these various technologies to support occupants in 
making more efficient resource-use decisions. 

Our goal is to help occupants optimize home use through computational interventions without imposing 
undue technological complexity, effort, or inconvenience. These interventions comprise a combination of 
information and interaction design;2,3,6 automation and control; adaptive intelligent agents; and distributed, 
ambient sensing. We seek to achieve a level of support with what Peter Tolmie and his colleagues refer to 
as unremarkable computing7—that is, technology that assists without imposing and that remains largely in 
the background. 

Critical questions to address in this research are8 

¥ What are the right conditions to affect automated or intelligent decisions related to controlling 
the residents’ environment? 

¥ What are the recovery and override efforts in correcting an automated system action that 
occupants have deemed wrong? 

¥ How do we accommodate and adapt to different user profiles and tasks? 
Here, we provide a framework for human-computer interaction in a smart home and present case studies 
based on our experience with designing two sustainable homes. 
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Beyond the Typical Smart Home 

Architects and designers of sustainable buildings are becoming more aware of the importance of occupant 
intelligence—that is, how occupants of a building engage with its operation.9,10 Buildings designed around 
occupant intelligence should provide flexible, adaptive task environments, refined control zones, and 
technologies that maximize occupants’ access to adaptive opportunities.9 

Architects, engineers, and system designers must reframe design strategies, given the co-evolution of 
human and building intelligence, to encourage and reinforce sustainable use. This requires new models of 
design that go beyond the typical smart home, encompassing occupant behavior and motivational strategies 
and exploring how automation can affect occupants’ daily rituals and sense of comfort. This last issue is 
particularly challenging. 

The Automation Challenge 
Smart homes are often difficult to manage.11 Even technologically passionate residents who equip their 
homes with varying degrees of control often find the control systems cumbersome.5 Managing such 
systems is even more difficult when the automation moves from user control to some form of rule-based 
behavior, because the rules might insufficiently reflect what the resident actually wants.5 In a recent study 
of home automation,5 most users expressed a desire for such systems to help with conservation actions—
reducing heat and turning off lights, appliances, and other home devices—yet current tools are still small, 
piecemeal devices that aren’t integrated into the larger home systems. 

Humans have an uneasy relationship with automation,12 as we discovered in our first net-zero home 
project.14 At the same time, automation is well suited to reducing energy use in circumstances involving 
vigilant attention to simple, distributed controls, such as thermostats and electrical switches. Computational 
intelligence offers the promise of simple, adaptive controls that can minimize user effort and optimize 
energy use—but the issue is how to best provide this assistance without causing discomfort and incurring 
override reactions, which are problematic in overly intrusive systems. 

Automated home systems provide two types of control:5 user control (an aggregation of lower-level 
controls into more zone-specific groups) and rule-based control, where the system makes decisions—
usually based on a schedule. These types of controls are difficult to manage because they force the static 
definition of a complex, a priori configuration that lacks a dynamic and holistic view of the home.5,8,11 
According to a recent study, occupants overwhelmingly view rule-based systems—the programmable 
thermostat being the simplest example—as problematic and error-prone.5 There are two reasons for such 
systems’ failure. 

First, the thermostat interface is nonstandard and invariably complex, so few users configure them 
successfully. More important, however, is the functional design. Most peoples’ lives are more complex and 
variable than the simple schedules the rules accept; thus, people end up setting simple schedules and 
needlessly running house systems when they’re not home—notably, heating and cooling systems. 

Design Considerations 
In line with Stephen Intille14 and others, we advocate for technology that helps humans behave 
appropriately rather than relieving them of any operational involvement with their homes.15 Issues of trust 
and customization are important.16 The advantages of smart homes to date have tended to be outweighed 
by complexity, but it’s clear that context-aware systems,15 distributed smart sensor or agent networks,17,18 
and adaptive behavior hold substantial promise. However, given the simplistic conditions that might guide 
behavior, we posit that two factors influence the efficacy of these approaches and they must be expressly 
modeled in the design. 
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First, we need to consider the cost of 
being wrong. For example, what happens if 
all the lights turn off because you fall asleep 
on the couch? The cost of being wrong 
might simply be the effort required to 
recover a desired state, but it could also 
implicate additional technological 
interventions, such as the need to include 
more information in the interface about the 
performance effects when running in a 
nonoptimal energy-efficiency mode. 

Second, we should recognize that the 
appropriateness of smart intervention can 
be highly contextual. Consider adaptive 
approaches to night lighting, which could 
provide adequate light for navigation when 
someone gets out of bed during the night 
without disturbing his or her Circadian 
sleep rhythms. The same manipulation of 
light levels during the day could prove 
intrusive. Designers who wish to explore 
the affordances and potential of these 
systems must be able to simulate them with 
a variable degree of automation. Coupled 
with feedback systems, the challenging 
design question is to balance the 
appropriate responsibility between 
prompting occupants for action and 
assisting them by carrying out that action automatically. 

So, what factors should be considered when examining appropriate technological intervention with the 
occupants of a smart home? 

Smart Intervention Framework 

We conceptually model the smart home as a complex ecosystem involving the occupants, physical and 
operational components of the home, external and internal context, and dependencies between these. The 
operational components are the technologies that let the occupant run things in the home. Along with the 
standard idea of smart home technologies—such as monitoring displays and thermostats—we point out that 
windows, doors, appliance displays, fans, and other aspects of the home not traditionally considered 
technology are in fact devices that allow some form of feedback and control. 

How humans interact with the home is central to any automation strategy and depends on awareness or 
knowledge, proximity, and activity (see Figure 1). 

 
 
The home is a complex system whose current state encompasses numerous attributes. Its state is also 

dependent, in a hierarchical manner, on its occupants, household activities (animate and inanimate), and the 
configuration of its components. Figure 2a provides a high-level view of some of these dependencies. 

 

 

Figure 1. A depiction of human-home interaction. How 
humans interact with the home is central to any 
automation strategy and depends on awareness or 
knowledge, proximity, and activity. 
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Occupant use of the home involves numerous factors. These are computationally difficult to capture, but 

even simple models of activity, presence, proximity, health, and comfort are critical to designing 
intervention strategies (see Figure 2b). How the occupant controls and is aware of the home state will 
depend on these as well as the affordances of home operation detailed in Figure 1. For example, the 
occupant who wants detailed control over lighting in the evening might benefit from automated light 
activation in the middle of the night when getting out of bed to check on a child—especially if the controls 
for the lights are across the room. Similarly, a display that shows energy use for the home is only useful 
when the occupant is close enough to read it. 

So, different classes of automation should exist in a home, ranging from learned to programmed 
automation and from fully automatic to human-initiated actions (see Figure 2c). The technology used in the 
automation (sensors and actuators) and how they communicate (the data network) has a great influence on 
the automation’s functionality and ability to perform with an acceptable level of accuracy. 

Furthermore, when considering a smart intervention for a home, we need to provide a context for the 
intervention that includes input values obtained not only inside the home but also outside the home, as 
Figure 2d shows (this is an extension of Wolfgang Kaltz and his colleagues’ work19). Note that the input 
from animate agents (occupants) can be considered in addition to inanimate devices. 

Consequently, we can formally view a smart intervention (SI) as a function to produce a new home 
state: 

 
SH ʹ′  = SI(HS, H, O, Ctx, Aut, E), 

 
where HS is the previous home state, H is the home, O is the occupants, Ctx is the context, Aut is the 
automation, and E is an evaluation of the appropriateness function. We introduce E to measure the cost of 
being wrong. HS is an instantiation of H, O, Ctx, and Aut at a point along a given time sequence. 

E would be a function of normalized measurements (accuracy, intuitiveness, and overrideability) where 
we maximize over the function to balance out the goals of energy efficiency and comfort. Note that E can 
vary from household to household and can even change over time. Furthermore, the smart intervention 

 

Figure 2. Concept maps of the different factors relevant for our smart intervention framework: the (a) 
home, (b) occupants, (c) automation, and (d) context. 
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function can be defined such that an intervention won’t occur if a minimum E threshold isn’t met. 
Smart interventions are realized when we consider the previous state of the home (Figure 2a), the type 

and activity of the occupants (Figure 2b), the type of automation (Figure 2c), the context of the home 
(Figure 2d), and a measure of how appropriate the action is for the occupants. Obviously, an intervention 
having low accuracy, requiring the occupants to read a how-to manual, or not letting the occupants override 
the system when it’s wrong wouldn’t be smart or appropriate. 

This appropriateness measure is extremely important yet challenging. In some cases, it relates to user 
preferences (such as comfort); in other cases, it depends on a more complex balance between previously 
known best practices (such as light levels for circadian rhythms), user activity, and external context. 
Furthermore, appropriate interventions aren’t noticed as much as inappropriate ones and thus provoke less 
annoyance. Consequently, typical HCI evaluation methods that rely on self-reporting, usability, or 
performance metrics don’t capture this measure of appropriate intervention at the necessary systemic level. 
This is why we instead derived our framework from a series of case studies, drawn from our experience in 
building sustainable home systems. 

Case Study: Occupancy and Sleep Detection  

A basic issue is determining whether someone is home. Although accurately performing this task can be 
difficult, it has several exploitable benefits in terms of energy conservation, sustainability, and cost savings 
for the occupant. Consider an intelligent agent (IA) that can turn down the heat when no one is home. Such 
automatic behavior could save money by lowering heating costs. It could also save the occupant time, 
because he or she wouldn’t need to (remember to) override the thermostat setting. 

Detecting if the occupants are sleeping can provide additional savings by automatically turning off lights 
that the occupant forgot about or setting the home automation system to a sleep mode. Our work on the 
Home Occupancy Agent (HOA) investigated such automated system behaviors.17,18 We first created rules 
for detecting nightly sleep patterns and then added rules for daytime nap detection from the activities we 
observed in our test house. Our results were mixed. 

Our initial examination of sleep detection used only ambient light sensors to determine the occupants’ 
nightly sleeping period. However, such an algorithm is brittle because sleeping patterns from one home to 
another can be extremely different—even within a given household, sleeping patterns change over time. 

So, we decided to look for a lux spike in certain ambient light sensors and create a general rule for the 
HOA to follow. To simplify things, we assumed that the occupants went to sleep before midnight and 
awoke before noon. Over the eight-month period, we collected data at 15-minute intervals, which the 
system used to achieve an f-score (the harmonic mean of precision and recall) of 0.89, indicating that the 
algorithm worked well in our test home. 

However, the performance of our sleep-detection algorithms could have been better. Polling the ambient 
light sensors every 15 minutes was too infrequent. If the occupants went to bed between two interval 
periods and took less than 15 minutes to go to bed, then the lighting trigger never fired, causing 
inaccuracies. Also, there were anomalies of 1.2 lux spikes during summer that caused the algorithm to think 
that the sleep period ended prematurely. 

When determining a napping period, we looked for light-level changes in a room designated for naps. 
However, the light levels in this nap room were greatly affected by opening and closing the curtains, which 
caused a breakdown in our rules. After running the algorithm over the eight-month period, the resulting f-
score was only 0.10. So what went wrong? 

We wrote rules based on a subset (one month) of the overall eight months of data. Environmental 
lighting and the variability of the occupants napping were the two main problems. Our findings suggest that 
online learning—such as reinforcement learning—could help make the rules-based agents more adaptable. 

The HOA system aimed to replace the complicated programmable thermostat schedule using automated, 
smart intervention to reduce heating costs. Although we designed the HOA with the appropriateness of 
smart intervention in mind, the cost of being wrong was significant. Having the HOA raise and lower the 
heating system temperature setpoint (when it was wrong about the state of occupancy and sleep) could 
cause occupant discomfort. Furthermore, the occupant would be inconvenienced by (repeatedly) having to 
override the thermostat settings. Owing to the lack of accuracy, the system failed to balance occupancy 
comfort with optimal energy efficiency, leading us to conclude that the lower the accuracy, the greater the 
cost of being wrong. 
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Case Study: Optimal Energy Conservation 

North House is a small solar-powered home designed to achieve net-zero performance (producing at least 
as much energy as it consumes) in the challenging Canadian climate. It incorporates sophisticated custom 
energy systems, adaptive intelligent building envelope technologies, specialized lighting and climate 
systems, and automated optimization behavior. For 10 days during the 2009 Solar Decathlon, North House 
saw more than 60,000 visitors, placing fourth (out of 20 entries) in the competition. 

The control system in North House employed several optimized subsystems with intelligent behavior—
notably, external shades that tracked the sun for efficient heating and cooling. The North House architects 
used an ESP–r simulation to tune the behavior of the intelligent shading in their original model,13 which 
proved insufficient in the later design stages. We (the interaction design team) came in relatively late and 
didn’t work on the final controls specification or system deployment in the house until approximately eight 
months before the competition. 

We immediately identified a problem with the shade automation: What if the resident wanted to alter the 
external shades for comfort, privacy, and natural light? To the system, this potentially put North House into 
a nonoptimal mode. Interface modes that indicated the shades’ mode and a time-out function to return to 
optimization were required. Our anecdotal experience in North House was that visitors (our potential users) 
struggled to understand how the system worked, what the optimal and nonoptimal modes represented, and 
how they might balance their needs with the optimized system state. 

Placement of the interactive interface controls was equally constrained by the building envelope and 
materials. Because the facades of North House are almost entirely glass, there were few places to embed 
controls for lights, thermostats, or other devices. A digital touchscreen panel provided the only means for 
the resident to control, track, and manage energy performance in North House, and the only place to put it 
was over a deep kitchen counter. High levels of natural light during the day made it perceptually difficult to 
see. In addition, an iPhone application served as a remote control for lighting and thermal controls. This 
turned out to be more than just an interesting design piece; many visitors noted the need for a remote 
control so that they didn’t have to move to a central location simply to turn on a light. 

This case highlights the problems with designing an energy-efficient home without being mindful of the 
appropriateness of smart intervention and the cost of being wrong. The North House engineers created a 
technological complex system that was smart in terms of optimal energy efficiency, but the house didn’t 
balance occupancy comfort with optimal energy efficiency. In fact, it didn’t even know that the occupants 
existed. The effort for an occupant to override the system was considerable and created a major 
inconvenience. We can conclude that a lack of considering the appropriateness of smart intervention 
immediately creates a high cost of being wrong, so much so that the occupant might disable the entire 
system. 

Both of our case studies reveal that rigid rule-based energy conservation must be dynamic in terms of 
co-existing with occupants. However, this doesn’t mean that we should throw away the rules on which they 
operate and replace them with a new machine-learning technique. To make rules less rigid, we should make 
them dynamic so that they can adapt to occupant behaviors. 

Design Case: Adaptive Lighting for Circadian Rhythms 

We’re currently exploring adaptive approaches to night lighting. When someone gets out of bed, we avoid 
disturbing their circadian sleep rhythms by providing adequate (but not full) light to navigate.20 Use of the 
same light-level implementation during the day would be intrusive and inappropriate. Designers who wish 
to explore the affordances and potential of these systems will need to be able to simulate them with a 
variable degree of automation. Coupled with feedback systems, the challenging design question is 
determining when to prompt for occupant action and when to carry out that action automatically. 

Figure 3 demonstrates one possible implementation. The system must be able to infer that the occupants 
are sleeping. Localized sensors in the room need to coordinate action and feedback to raise the ambient 
light level in the room until it has reached a lighting level below what would disturb the occupant’s 
circadian sleep rhythms. 
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The rules in Figure 3 are triggered when an event happens. The home sleeping state is determined by an 
online learning algorithm. The first rule will set the ambient light in a room to a lighting level that won’t 
disturb the occupant’s circadian sleep rhythms if the light switch is pressed once when it’s off and the 
house is in sleeping mode. The second rule overrides the first if the occupant presses the light switch twice. 
In case the occupant wants to wake up and fully turn on the lights, the third rule says that if the light switch 
is pressed once when it was off and the house isn’t in sleeping mode, then we should have full lighting. The 
fourth rule handles turning off the lights in a room. 

The proposed smart intervention operates much the same way as most digital dimmer switches do and 
eliminates the inconvenience of having the occupant’s circadian sleep rhythms interrupted while keeping 
the light switch’s intuitive operation. The cost of being wrong is eliminated because of the easy override 
with a second press. A balance has been struck between occupant comfort and the technology. 

Design Case: Adaptive HV AC Acclimatization  

Monitoring home occupancy using power monitoring and ambient light sensors is a first step toward 
achieving an adaptive HVAC system. We’ve further modified the system to use the arming and disarming 
of the alarm system to determine home occupancy. 

When a home is unoccupied, it can be put into a power saving mode by changing the thermostat setpoint 
and turning off equipment such as ambient displays. We can do by sending specific commands to different 
equipment around the house or by broadcasting a message over a data network of the home state changes. 
When the occupant returns, the power saving mode is reversed. In the case of heating (HVAC), we might 
want to infer when the occupant will most likely be home and preheat the home. Figure 4 demonstrates 
how this might look. 
 

HOME_STATE (variables): 
  home_sleeping = yes; 
  bedroom_light_level = 0; 
  bedroom_light_switch = off; 
 
RULES: 
  WHEN bedroom_light_switch IS pressed_once AND 
    WHEN bedroom_light_switch WAS off AND 
    WHEN home_sleeping IS yes 
    SET bedroom_light_level = CIRCADIAN_LIGHT_LEVEL; 
  WHEN bedroom_light_switch IS pressed_twice 
    SET bedroom_light_level = MAX_LIGHT_LEVEL; 
  WHEN bedroom_light_switch IS pressed_once AND 
    WHEN home_sleeping IS no 
    SET bedroom_light_level = MAX_LIGHT_LEVEL; 
  WHEN bedroom_light_switch IS pressed_once AND 
    WHEN bedroom_light_switch WAS on 
    SET bedroom_light_level = MIN_LIGHT_LEVEL; 

Figure 3. Circadian-rhythm-aware lighting at night. The system must be able to infer that the occupants 
are sleeping. Localized sensors in the room need to coordinate action and feedback to raise the ambient 
light level in the room until it has reached a lighting level below what would disturb the occupant’s 
circadian sleep rhythms. 
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This example doesn’t address every situation in which the user might want to override the temperature 

setpoint. Instead, it highlights a couple of key points that demonstrate how rule-based systems with online 
learning could be used. The first rule says that when the security system is armed in the away mode, the 
following actions apply: consider the house to be unoccupied, change the thermostat setpoint to save 
energy, turn off all ambient displays, and set the home automation system to an away profile. We could 
have added rules to check for thermostat overrides, but that would complicate our simple example. 

The second rule specifies that when the house is unoccupied and there’s a high chance (in this case, 95 
percent) that the occupant will be home within 30 minutes, then we slowly increase the heat (or cooling if 
TEMP_INCREMENT is negative) so that the occupant comes back to a more pleasant house temperature. This 
inference comes from a learning algorithm that makes the rules more adaptable. 

The third rule says that the occupant is home when the security system is disarmed. Once the user is 
home, we change the thermostat setpoint to its original value, turn on the ambient displays, and set the 
home automation system to an at home profile. 

Using historical occupancy usage data to control the setpoint in an HVAC system is a goal similar to 
that of the first case study; however, we reduce significantly the cost of being wrong. If the smart 
intervention of the adaptive HVAC system is wrong, it would be when the occupant either returns home 
earlier or later than usual. If the occupant returns home earlier than usual, the heating/cooling setpoint 
would have been changed at the same time the occupant enters the home (worst-case scenario). The 
occupant’s comfort wouldn’t be optimal, but the HVAC system is optimal in terms of energy efficiency. 
This wouldn’t be the case if the occupant used the programmable option of the thermostat. So, the cost of 
being wrong is still less than without the automated system. Additionally, the occupant doesn’t have the 
inconvenience of setting the thermostat after entering the home. 

If the occupant returns home later than usual, his or her comfort would be optimal but not the energy 
efficiency (meaning the occupant would have spent money heating an empty home). In this case, the 
occupant might be inconvenienced by a slightly higher energy bill, but comfort is maintained, and there’s 
the added convenience of not having to worry about programming the thermostat. 

Having dynamic rules that adapt to occupant behavior strikes a balance between occupant comfort and 

HOME_STATE (variables): 
  home_occupied = yes; 
  alarm_system = disarmed; 
  temp_setpoint = 21.0; 
  TEMP_INCREMENT = VACANT_TEMP_SETPOINT / 2; 
 
RULES: 
  WHEN alarm_system IS armed_away 
    SET home_occupied = no AND 
    SET temp_setpoint = VACANT_TEMP_SETPOINT AND 
    SET ambient_displays.send_cmd = 'turn off' AND 
    SET automation.send_cmd = 'set away profile'; 
  WHEN alarm_system IS armed_away AND 
    WHEN home_occupied 95% yes WITHIN_TIME - 30 MIN 
    SET temp_setpoint += TEMP_INCREMENT 
  WHEN alarm_system IS disarmed 
    SET home_occupied = yes AND 
    SET temp_setpoint += TEMP_INCREMENT AND 
    SET ambient_displays.send_cmd = 'turn on' AND 
    SET automation.send_cmd = 'set athome profile'; 

Figure 4. Electricity and heating cost-savings with occupancy detection. When a home is unoccupied, it 
can be put into power-saving mode by changing the thermostat setpoint. When there’s a high chance (in 
this case, 95 percent) that the occupant will be home within 30 minutes, the system slowly increases the 
heat. 
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energy efficiency. The fact that there are rules means that users can understand and modify them to 
increase satisfaction with the system. However, the same can’t be said about having a system that relies on 
machine-learning techniques, such as artificial neural networks and support vector machines, which rely on 
statistical probability and the recomposition of that problem into linearly separable classifications. 

A New Design Model 

Understanding how residents use energy in the home is an emerging area of active design research. 
Designing for humans requires a user-centered approach.8 A key concept in ambient intelligence is that its 
operation should have to be explicitly learned or managed by the occupant. This has been a problem for 
smart homes in general, where poor usability and intrusive and inappropriate operation have overwhelmed 
users.12 Explicitly modeling the cost of inaccurate operation with the cost to the user to recover or override 
the decision provides a mechanism to evaluate how appropriate and effective a reasoned intervention might 
be and (hopefully) discourages a simplistic reliance on how the home should operate. 

Given the state of the art, it’s clearly infeasible to design a rule-based (or learning) system that fully 
captures the complexity of daily life, but even simple models can go a long way toward appropriate 
interventions. Perhaps more importantly, these models and their exploration in use can help us avoid 
inappropriate interventions that evoke frustration and technological resistance in occupants. 

The smart intervention need not be full automation; in fact, it might resemble a “power-steering” 
assistive approach rather than a fully automated “self-driving” approach, as in the lighting example. As we 
pointed out, a low-cost intervention is one that lets the occupant easily and efficiently override the 
intervention without undue effort (as in the lighting case study). We propose that the first step to providing 
more effective ambient intelligence in the home is to identify scenarios and contexts in which these low-
cost interventions can be usefully deployed: in other words, rather than trying to solve the entire problem, 
we’re interested in discovering the subproblems that are most tractable to these kinds of interventions. 

Taking this approach has the advantage that smart interventions can be localized and distributed without 
relying on whole-home systems. It also means that hybrid approaches (where the intelligent operation 
exists in conjunction with user overrides) can be more easily implemented. Distributing rules with learning 
that solve subproblems should reside in sensors and other equipment around the home. This distribution of 
intelligence is needed to reduce system latency and create modularity. 

Reducing system latency increases system responsiveness to human-home interactions—which is 
important when responsiveness must be immediate, as in the case of adaptive lighting for circadian rhythms 
(responsiveness to light-switch presses must be in the microseconds). Addressing subproblems in a 
modularized fashion creates a type of plug-and-play system. This benefits the smart home by allowing 
functionality to be extensible, malleable, and upgradeable. 

Conclusion 

We’ve derived this model from our emerging experience in designing systems for sustainable homes. This 
emphasizes the fact that none of the approaches we advocate can be theoretically tested in isolation but 
must be actually deployed and studied in situ. We’re currently implementing and exploring ambient 
intelligence interventions in two sustainable homes, and plan to extend the deployment to more. Our 
current and future research will rely heavily on evaluation with occupants in a variety of home contexts. 
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