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Abstract—Forecasting energy or power usage is an important
part of providing a stable supply of power to all customers
on a power grid. We present a novel method that aims to
forecast the power consumption of a single house, or a set of
houses, based on non-intrusive load monitoring (NILM) and
graph spectral clustering. In the proposed method, the aggregate
power signal is decomposed into individual appliance signals and
each appliance’s power is forecasted separately. Then the total
power forecast is formed by aggregating forecasted power levels
of individual appliances. We use four publicly available datasets
(REDD, RAE, AMPds2, tracebase) to test our forecasting method
and report its accuracy. The results show that our method is
more accurate compared to popular existing approaches such
as autoregressive integrated moving average (ARIMA), similar
profile load forecast (SPLE), artificial neural network (ANN),
and recent NILM-based forecasting.

Index Terms—power forecasting, load disaggregation, non-
intrusive load monitoring (NILM), spectral clustering, smart grid

I. INTRODUCTION

ACCURATE power demand forecasting is important for
maintaining a stable power grid. With advance warning

of demand surges, energy providers would be able to better
plan their power generation and/or perform other measures
such as peak shaving or load shifting [1], [2]. Various forecast-
ing methods have been proposed based on extrapolation [3],
[4], Kalman filtering [5]–[7], fuzzy logic [6], [8]–[10], autore-
gressive integrated moving average (ARIMA) models [11]–
[14], artificial neural networks (ANN) [6], [11], [15], and
similar profiles load forecast (SPLF) [16], [17]. All these
methods attempt to forecast the aggregate power (all loads
combined) directly by relying on the temporal dependence of
the aggregate power signal. However, we note that stronger
temporal dependence may exist in power signals of individual
appliances. This is easily seen in the case of cyclical appli-
ances such as refrigerators, which turn ON and OFF roughly
periodically. When the power signals of different appliances
are aggregated, such temporal dependence may be disrupted,
hence forecasting the aggregate power may be more difficult
than forecasting the power usage of individual appliances.

Recently, a few residential power forecasting methods have
been proposed based on the principle of disaggregating in-
dividual appliances first [18], [19], using non-intrusive load
monitoring (NILM)1. Here, the aggregate power signal is
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1NILM is a technique to determine how much power each appliance is
using from an aggregate signal [20]. In the literature, there are number of
NILM methods for residential appliance identification [21]–[25].

first decomposed into individual appliance signals, then each
appliance’s power is forecasted separately, and finally the total
power forecast is formed by aggregating forecasted power
levels of individual appliances. These NILM-based methods
give better forecasting accuracy than the traditional methods
that operate on the aggregate signal directly [18]. However,
both [18], [19] assume that the behaviour of an individual
appliance is uncorrelated with the behaviours of other appli-
ances, which is not the case in practice [26]. Therefore, in this
paper, we propose a NILM-based residential power forecasting
method that incorporates correlations of appliances behaviours
in terms of their state (ON/OFF) durations. Moreover, since
we have individual appliance level forecasting, the proposed
forecasting method is more suitable for real-time demand side
management that relies on appliance-level information to eval-
uate the amount of energy that can be saved. A discussion of
state duration probabilities is presented in Section II, followed
by the proposed method in Section III. In Section IV, we show
through extensive evaluation that the proposed forecasting
method offers higher accuracy compared to several existing
methods based on NILM [19], ANN [11], ARIMA [11], and
SPLF [17]. Finally, conclusions are presented in Section V.

II. STATE DURATION PROBABILITIES

Some appliances, such as traditional refrigerators, have only
two states: ON and OFF. Others, such as washing machines,
may have multiple states (with continuous varying power
levels), one of which is an OFF state, and the others represent
different power levels used in different modes of operation.
To simplify our model, we decompose continuous-state and/or
multi-state appliances into multiple two-state (ON/OFF) ap-
pliances as follows. Continuously-varying power profiles are
quantized into multiple states following [27]. Then, if there
are N states in the resulting multi-state profile (with one
of the states being the OFF state), we represent such an
appliance by N-1 virtual two-state appliances, where each of
these two-state appliances consists of an OFF state and one
of the N-1 remaining states. In the remainder of the text, the
term “appliance” refers to a two-state (ON/OFF) appliance,
whether it really is a two-state appliance, or a virtual two-
state appliance obtained from a multi-state appliance.

From experience we know that some appliances have certain
expected ON durations. For example, a washing machine
would often be ON for 30-60 minutes, while a water kettle
would often be ON for 2-5 minutes. In this work, we utilize
such ON/OFF duration patterns to forecast future power de-
mand. For a given appliance ai, the duration of the ON state
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Fig. 1. Examples of ON/OFF-state duration probabilities.

is denoted by T{ai} and represents the time elapsed since the
appliance was turned ON. A set of appliances S is said to be
ON if all the appliance in the set are ON. The duration of the
ON state of set S is denoted by TS . If different appliances in
S turn ON at different times, then TS is measured from the
time instant when the last appliance in the set is turned ON.

State durations are random quantities, so we describe them
with a probability distribution. Specifically, we compute the
following probabilities:

P [TS ≥ t] =
ntS
nS
, (1)

where nS is the number of times within the training set that
all appliances in the set S were ON, and ntS is the number of
times that all of them were ON for at least t time units.

Set S of appliances is said to be OFF if at least one appli-
ance in the set is OFF. The OFF-state duration is characterized
analogously to the ON state:

P [TS ≥ t] =
ntS
nS
, (2)

where TS represents the time elapsed since the set S entered
the OFF state, nS is the number of times within the training
set that the set S was OFF, and ntS is the number of times that
S was OFF for at least t time units. If different appliances in
S turn OFF at different times, then TS is measured from the
time instant when the first appliance in the set is turned OFF.

Fig. 1 shows the ON and OFF duration probability distri-
butions for the (LCD TV, lamp) pair. Here, fifty-day profiles
in tracebase [28] were used to compute these probabilities.

III. PROPOSED METHOD

Let t denote the current time, tp denote a previous time
(tp < t), and tf denote a future time (tf > t) for which we
want to make a prediction. Also, let dc = t− tp be the time
elapsed between tp, and current time t, and let df = tf − tp
be the time that will have elapsed between tp and tf . The
proposed residential power forecasting method has three main
stages: appliance state identification, ON-set prediction, and
aggregation. Each stage is described below.

Appliance State Identification: First, ON/OFF appliances
are identified at the current time t from the given aggregated
power signal of a house. Then for each appliance, the most
recent time instant when the current state of the appliance
started is identified. NILM methods can identify appliances
that are/were ON/OFF at any given time up to the current
time t. Therefore, our recent NILM method [24] is used to
identify the most recent time instant when the current state of
the appliance started. The identified appliance states, together
with state duration probabilities (Section II), allow us to make
predictions about which appliances will be ON at time tf .

ON-Set Prediction: The ON-set is the set of all appliances
that are ON at a particular time. We predict the ON-set at
time tf with the help of spectral clustering [29], which has
three main steps: graph construction, spectral representation,
and clustering. First, we construct a graph of appliances and
choose distances between pairs of appliances as functions of
their state duration probabilities.

Suppose a pair of appliances {ai, aj} is currently ON. Based
on the previously identified appliance states, we can determine
the most recent time instant at which the pair entered the ON
state. Let tp be that time instant. Now consider the probability
of these two appliances remaining in the ON state until the
future time tf or beyond. The conditional probability of this
event, given that these two appliances are currently ON, is
P [(T{ai,aj} ≥ df )|(T{ai,aj} ≥ dc)]. Using Bayes’ theorem,

P [(T{ai,aj} ≥ df )|(T{ai,aj} ≥ dc)] =
P [(T{ai,aj} ≥ dc)|(T{ai,aj} ≥ df )] · P [(T{ai,aj} ≥ df )]

P [(T{ai,aj} ≥ dc)]
.

(3)

From the definition of dc and df , we have df ≥ dc. Hence

P [(T{ai,aj} ≥ dc)|(T{ai,aj} ≥ df )] = 1,

so the required conditional probability becomes

P [(T{ai,aj} ≥ df )|(T{ai,aj} ≥ dc)] =
P [(T{ai,aj} ≥ df )]
P [(T{ai,aj} ≥ dc)]

.

(4)
The two terms on the right hand side of (4) are found from the
state duration probabilities (Section II). Finally, the distance
D[i, j] between appliances ai and aj at time tf is defined as

D[i, j] = 1− P [(T{ai,aj} ≥ df )|(T{ai,aj} ≥ dc)], (5)

so that large conditional probability means small distance.
Now consider a pair of appliances {ai, aj} that is currently

OFF, which, according to our definition in Section II, means
that either ai or aj or both are currently OFF. Based on the
previously identified appliance states, we can also determine
the most recent time instant (tp) at which the pair entered
the OFF state. Using the same reasoning as above, we can
compute the conditional probability of the pair staying in the
OFF state until a future time tf given that it is currently in
the OFF state:

P [(T {ai,aj} ≥ df )|(T {ai,aj} ≥ dc)] =
P [(T {ai,aj} ≥ df )]
P [(T {ai,aj} ≥ dc)]

.

(6)
The probabilities on the right hand side of (6) are found from
the state duration probabilities (Section II). Then the distance
D[i, j] between appliances ai and aj at time tf is defined as

D[i, j] = P [(T {ai,aj} ≥ df )|(T {ai,aj} ≥ dc)]. (7)

After obtaining D[i, j] for each appliance pair, a fully
connected undirected graph G = (V, E), called an appliance
graph is formed, where V is the set of all appliances (vertices
of the graph) and E is the set of edges. The weights of edges
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are represented by the affinity matrix A, where the weight of
the edge connecting ai and aj is given by [29]:

A[i, j] = A[j, i] =

{
exp

{
−D[i,j]

2σ2

}
, if i 6= j

0, otherwise,
(8)

where σ is an affinity scaling factor. The intuition between
affinities is that they reflect correlation of appliance be-
haviours. Similarly to [30], we select σ as the standard
deviation of the values in D. An example of an appliance
graph is shown in Fig. 2, with affinities between appliances
as edge weights, which can be computed from (8).

After constructing the appliance graph at time tf , spectral
representation of each appliance is obtained from the Lapla-
cian matrix L. First, L is computed as [29]:

L = W−1/2AW−1/2, (9)

where W is a diagonal matrix whose diagonal entries
are summations of the corresponding columns of A:
W[i, i] =

∑n
j=1 A[j, i]. Then, eigenvectors v1,v2, ...,vm

corresponding to the m largest eigenvalues of L are used to
construct a matrix X as X[:, i] = vi, where X[:, i] is the i-th
column of the matrix X. Finally, matrix Y is defined as

Y[i, :] =
X[i, :]

‖X[i, :]‖2
, (10)

where Y[i, :] is the i-th row of the matrix Y and ‖·‖2 is the
Euclidean norm. Matrix Y is a spectral representation of the
appliance graph, where appliance ai is represented as a point
in Rm by the i-th row of Y.

The rows of Y are then clustered using K-means cluster-
ing [31]. The number of clusters (K) is determined based on
eigenvalue differences of the matrix L as follows [32]:

K = argmax
k

(|λk − λk+1|), (11)

where λk denotes the k-th largest eigenvalue of L. Upon
clustering, the j-th cluster represents appliance set Sj . For
each of the K clusters, the average Euclidean distance AEDj

of the vectors associated with Sj is

AEDj =
1

Nj

∑
ai∈Sj

‖Y[i, :]− cj‖2. (12)

where Nj be the number of appliances in Sj and cj is
the centroid of the vectors representing those appliances:
cj = 1

Nj

∑
ai∈Sj

Y[i, :]. As discussed in [24], the value of
AEDj is inversely related to the joint probability of appliances
in Sj being ON at time tf . However, for clusters that contain a
single appliance, AEDj = 0. Hence, if there are any singleton
clusters after clustering (say Sj = {ak}) , we extend Sj with
a dummy appliance ak′ (so that Sj = {ak, ak′}) with D[k, k′]
at time tf computed as

D[k, k′] ={
1− P [(T{ak} ≥ df )|(T{ak} ≥ dc)], if ak is ON at t
P [(T {ak} ≥ df )|(T {ak} ≥ dc)], if ak is OFF at t.

(13)

Fig. 2. An example of an appliance graph.

Fig. 3. A sample forecasted profile for house 1 in the REDD dataset.

Moreover, D[i, k′] = D[i, k] and D[k′, i] = D[k, i] for i 6= k.
After adding dummy appliances to singleton clusters, a new
graph is constructed, its spectral representation is obtained,
and new AEDj’s are computed. The appliance set with the
smallest AEDj is predicted to be ON at tf .

Aggregation: The average power level of each appliance in
this set is used as its forecasted power level at time tf . Here,
the average power level of each appliance is obtained similar
to [23]. The sum of the forecasted individual appliance power
levels is considered as the total forecasted power at time tf .
For a group of houses, the sum of the forecasted powers for
each house is the total forecasted power demand of that group.

IV. EXPERIMENTAL RESULTS

We compare the proposed method with four other forecast-
ing methods based on NILM [19], ANN [11], ARIMA [11],
and SPLF [17]. All methods were implemented in MATLAB
R2015b on a 2.2 GHz MacBook Pro with Intel core i7
processor and 16GB memory. No special optimization was
performed for any of the methods. Following [17], the Mean
Absolute Percentage Error (MAPE) and the Root Mean Square
Error (RMSE) are used as performance metrics.

We conducted three case studies using the data from four
public datasets: the Reference Energy Disaggregation Data
Set (REDD) [33], the Rainforest Automation Energy Dataset
(RAE) [34], the Almanac of Minutely Power dataset version
2 (AMPds2) [35], and tracebase [28]. REDD, RAE, and
tracebase data was converted to 1-minute intervals to match
the data in AMPds2.

Case Study 1: In this case study, all six houses from the
REDD dataset and one house from the RAE dataset were used.
From the REDD dataset, the first 26 days of active power
profiles were used for the training and the next 30 days were
used for testing. Here, “training” means computing ON/OFF-
state duration probabilities (1)-(2) in the proposed method,
determining ON/OFF duration patterns of individual appliance
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TABLE I
FORECASTING ACCURACY AND AVERAGE EXECUTION TIME OF EACH HOUSE IN REDD AND REA DATASETS FOR A 180-MINUTE AHEAD FORECAST

Forecasting accuracy in terms of MAPE (%) and RMSE (kW) respectively Average execution time (s)
House
Name Proposed NILM

[19]
ANN
[11]

ARIMA
[11]

SPLF
[17] Proposed NILM

[19]
ANN
[11]

ARIMA
[11]

SPLF
[17]

REDD1 4.69 0.57 8.14 1.08 9.21 1.17 9.63 1.29 10.14 1.48 1.02 0.91 0.84 3.72 0.93
REDD2 4.28 0.51 7.87 1.10 9.51 1.24 9.39 1.27 9.42 1.21 1.03 0.93 0.78 3.11 1.08
REDD3 6.34 0.71 14.72 1.41 16.48 1.65 17.71 1.69 18.48 1.52 1.17 1.01 0.86 2.99 1.07
REDD4 6.16 0.68 12.98 1.31 15.92 1.62 16.32 1.63 18.89 1.66 1.06 0.95 0.79 3.01 0.92
REDD5 8.04 0.72 15.48 1.43 19.53 1.79 19.46 1.82 20.64 2.01 1.12 0.97 0.91 3.04 1.13
REDD6 7.24 0.69 13.18 1.46 19.98 1.85 21.38 1.92 20.57 1.98 1.09 0.91 0.86 2.97 1.08
REA 4.32 0.55 7.92 1.02 9.08 1.12 8.99 1.21 9.36 1.17 1.03 0.87 0.81 3.18 1.05

TABLE II
THE MAPE(%)/RMSE(KW) FOR A 180-MINUTE AHEAD POWER FORECASTING OF THE HOUSE IN AMPDS2 DATASET

Season Proposed NILM [19] ANN [11] ARIMA [11] SPLF [17]
Context-free Seasonal Context-free Seasonal Context-free Seasonal Context-free Seasonal Context-free Seasonal

Winter 4.21/0.62 3.62/0.51 8.56/1.21 8.01/1.17 10.5/1.32 9.97/1.24 11.4/1.43 10.9/1.34 11.3/1.39 10.7/1.34
Spring 3.97/0.56 3.58/0.44 7.97/1.15 7.21/1.07 9.51/1.23 9.04/1.15 9.48/1.37 9.02/1.23 10.9/1.35 10.4/1.27
Summer 3.69/0.45 3.01/0.37 9.15/1.21 8.13/1.12 11.5/1.38 10.8/1.24 11.8/1.33 11.1/1.29 12.5/1.37 12.0/1.31
Fall 3.93/0.54 3.41/0.42 8.75/1.16 7.91/1.04 10.1/1.37 9.7/1.21 12.1/1.48 11.5/1.33 12.2/1.34 11.7/1.29

TABLE III
FORECASTING ACCURACY AND AVERAGE EXECUTION TIME FOR THE AGGREGATED POWER FORECASTING OF 400 HOUSES IN THE CASE STUDY 3

Proposed NILM [19] Aggregating forecast Forecasting aggregate
ANN [11] ARIMA [11] SPLF [17] ANN [11] ARIMA [11] SPLF [17]

MAPE (%) 1.87 4.52 5.27 6.08 5.35 5.82 6.85 5.78
RMSE (kW) 37 81 99 127 117 124 138 123
Average execution time (s) 1.53 1.37 0.85 3.47 1.68 0.83 3.31 1.63

for the method in [19], and obtaining model parameters for
the two methods in [11]. In [17], the training set is the search
space of similar profiles. From the RAE dataset, the first 25
days were used for training, and the next 38 days for testing.

Power consumption for each house in REDD was predicted
180 minutes ahead in 1-minute steps using the proposed
method as well as the methods in [11], [17], [19]. The MAPE
and RMSE results are shown in Table I, with the best results
indicated in bold. As seen in the table, the proposed method
consistently outperforms others by a large margin, with MAPE
reduced by 42-67% and RMSE reduced by 46-65%. A sample
forecasted power profile for house 1 is shown in Fig. 3, where
we can see that the proposed method tends to perform fairly
accurate predictions. NILM [19], ANN [11], ARIMA [11], and
SPLF [17] are generally able to predict upward and downward
swings in power consumption, but with much less accurate
predictions of power levels and with some phase offset. The
average execution time per sample to predict 180 minutes
ahead is also shown in Table I. As seen in the results, ANN-
based method is the fastest and NILM-based method is the
second fastest, followed closely by SPLF and proposed, while
ARIMA-based method is about three times slower.

Case Study 2: In the second case study, we evaluate
the effectiveness of the forecasting methods on the AMPds2
dataset. This dataset includes two years of data for a single
house. We use the first year of data for the training and the
second year for testing. In this case, we have several choices:
we can create one model trained over the whole year, which
we call context-free model, or produce four models by training
over each season (winter, spring, summer, fall) separately,
which we call seasonal context-based models.

The 180-minute ahead (in one minute steps) forecasting
accuracy of the power consumptions in each season from April
2013 to March 2014 in the AMPds2 house are presented in
Table II in terms of MAPE and RMSE. Again, we compare

against the methods in [11], [17], [19]. As shown in Table II,
the MAPE and RMSE of the proposed method are significantly
better than those of other methods, with MAPE and RMSE
reduced by 50-71% and 48-63%, respectively. Further, the
seasonal context helps improve the forecasting accuracy of all
five methods, but the seasonal-context version of the proposed
method is the most accurate one, with MAPE and RMSE
reduced by 50-75% and 56-72%, respectively, compared to
other methods.

Case Study 3: Finally, we evaluate the performance of
aggregated power forecasting for a large set of houses. Since
REDD, RAE and AMPds2 datasets contain the data for
relatively few houses, we created a large set of “virtual” houses
from tracebase manually. Most of the appliances selected from
tracebase have more than 120 days worth of power profiles.
The first 50 days were used for the training and the rest were
used for testing on virtual houses. For each virtual house, 12
appliances were chosen randomly from the 20 appliances2.
Then, from each chosen appliance, a power profile window
of 10 consecutive days was selected randomly to represent
10-day’s usage of the given house. This way, 10-days usage
profiles of 400 virtual houses were generated.

The 180-minute ahead (in one minute steps) forecasting
accuracy of the aggregated power consumptions of all 400
houses is presented in Table III in terms of MAPE and
RMSE. We show two sets of results for the methods in [11],
[17]: forecasting each house and aggregating the forecast
(“aggregating forecast”) and forecasting the aggregate directly
(“forecasting aggregate”). As seen in the table, the proposed
method significantly outperforms the other methods in each

2Single state: 60 W and 100 W lamps, 1800 W and 2000 W water kettles,
microwave oven, toaster, iron, video projector; continuous varying: LCD tele-
vision, CRT television, CRT monitor, TFT monitor, remote desktop, desktop
computer; multiple states: cooking stove, refrigerator, washing machine, dish
washer, laundry dryer, washer dryer combo.
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case, with MAPE and RMSE reduced by 59% and 54%,
respectively, compared to the best alternative, which is [19].
The average execution time3 per sample to predict 180 minutes
ahead is also shown in Table III. As seen in the results,
although ANN-based method [11] is the fastest, the proposed
method has a practically viable average execution time.

V. CONCLUSIONS

A novel power forecasting method that uses appliance state
identification and graph spectral clustering was presented.
Once the current and previous appliance states are identified,
they are used to perform the power forecast for each appliance,
and the results are aggregated to provide the total power
forecast. The proposed method was compared against four
forecasting methods from the literature, showing superior per-
formance in each case. The advantage of the proposed method
comes from the following two aspects: (1) disaggregating the
total power signal into individual appliances, which may be
easier to forecast, and (2) modelling joint appliance behaviour
via an appliance graph. In the future, we plan to incorporate
time-of-day context in the proposed method to improve the
forecasting performance.
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