
IEEE TRANSACTIONS ON SMART GRID 1

TraceGAN: Synthesizing Appliance Power
Signatures Using Generative Adversarial Networks

Alon Harell, Student Member, IEEE, Richard Jones, Student Member, IEEE,
Stephen Makonin, Senior Member, IEEE, and Ivan V. Bajić, Senior Member, IEEE

Abstract—Non-intrusive load monitoring (NILM) allows users
and energy providers to gain insight into home appliance
electricity consumption using only the building’s smart meter.
Most current techniques for NILM are trained using significant
amounts of labeled appliances power data. The collection of
such data is challenging, making data a major bottleneck in
creating well generalizing NILM solutions. To help mitigate the
data limitations, we present the first truly synthetic appliance
power signature generator. Our solution, TraceGAN, is based on
conditional, progressively growing, 1-D Wasserstein generative
adversarial network (GAN). Using TraceGAN, we are able to
synthesise truly random and realistic appliance power data
signatures. We evaluate the samples generated by TraceGAN
in a qualitative way as well as numerically by using traditional
GAN evaluation methods such as the Inception score. Finally, we
provide a simplistic example for the use of TraceGAN as a data
augmentation tool for supervised NILM training.

Index Terms—NILM, Load Disaggregation, Generative Adver-
sarial Networks, GAN, Deep Learning, Data Synthesis, Power
Signals, Smart Grid, Sustainability.

I. INTRODUCTION

OBTAINING meaningful insight into the power consump-
tion properties of residential users is a topic of growing

importance. Such knowledge allows energy providers to better
anticipate future demand, while allowing end users to identify
costly appliances within their home, or other energy inefficient
habits. Through a better understanding of each specific appli-
ance’s power consumption, users and providers can also begin
to reduce the environmental impact of the electric grid.

Hart [1] proposed to determine the power consumption of
appliances computationally through what is known as non-
intrusive load monitoring (NILM). Using only the smart meter
reading of a home, NILM infers the power consumption
of appliances within by way of some machine learning or
optimization algorithm. In most cases, algorithmically, the
biggest challenge in NILM is obtaining good approximations
of the distributions of appliance power consumption (pi). More
specifically, each appliance’s posterior distribution conditioned
on the aggregate power (pH ) measurement — ρ (pi | pH).
While unsupervised methods exist for this estimation, such
as [2], [3], it is most commonly achieved using supervised
learning methods. In a supervised setting for NILM, measure-
ments of the aggregate and appliance specific power, taken

This research was made possible through the NSERC CGS-M scholarship
and NSERC Discovery Grants RGPIN-2018-06192 and RGPIN-2016-04590.

Authors are with the Computational Sustainability Lab, School of En-
gineering Science, Simon Fraser University, Burnaby, BC, Canada (email::
aharell@sfu.ca, rtj4@sfu.ca, smakonin@sfu.ca, ibajic@ensc.sfu.ca).

Manuscript received June 16, 2020; revised February 13, 2021.

simultaneously over significant periods of time, are used to
build a model of the posterior probabilities. Some of the
common models include hidden Markov models [4], [5],
integer programming [6], [7], and more recently, deep neural
networks [8]–[13].

Using such supervised methods means an algorithm’s per-
formance greatly depends on how well the training data repre-
sents the real distributions. In the context of NILM, this means
that the training data needs to represent the true distribution
of a household’s power consumption characteristics. To ensure
a good approximation of the real distributions, as well as a
fair evaluation of performance, long term datasets must be
used for training and testing.As a result, since 2011, data
collection has been a main focus of NILM research, and has
lead to a creation of a many publicly available datasets such
as [14]–[17]. While these datasets continue to advance the
development of NILM solutions, each dataset is unique (in
terms of duration, sampling frequency, methodology, etc.) and
may only provide a small part of the full distribution of power
consumption.

When considering options for enriching NILM data, and in
light of the aforementioned challenges, an alternative approach
is to generate synthetic data. Our contribution is a novel ap-
proach for generating truly random appliance power signatures
using generative adversarial networks (GAN). Our synthesizer,
named TraceGAN, is capable of generating realistic appliance
power traces in large quantities, with no hand modeling,
allowing for the creation of truly random, new appliances.
TraceGAN is unlike previous attempts at generating new
power data [18]–[21], which are based on simple appliance
modeling. TraceGAN is also novel within the existing GAN
literature, as it presents an improvement over existing time-
series generators based on GANs.

II. RELATED WORK

A. Generative Adversarial Networks (GANs)

Until recently, the main use for deep neural networks (DNN)
was solving problems such as classification, regression, or
segmentation. While DNNs were highly successful at such
tasks, including NILM [8], [11], they were not able to generate
synthetic data. This changed in 2014 with the introduction of
generative adversarial networks (GAN) [22]. The main novelty
in GAN is that instead of one neural network trained to solve
an optimization problem, two competing neural networks are
trained to find the equilibrium of a game.

The two players in the GAN game are known as the gener-
ator and the discriminator. The generator tries to generate

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 2

Fig. 1. GAN structure with alternating discriminator and generator training.

realistic signals from a random input known as the latent
code (often denoted z), while the discriminator attempts to
successfully distinguish these generated signals from real ones.
The training process is performed in turns, alternating between
training the generator and the discriminator once (or more) at
each turn. In terms of training loss, both the generator and
discriminator are usually trained using some form of classi-
fication loss L, often binary cross-entropy. The discriminator
loss is the sum comprised of two terms: L(xr,1), the loss
from classifying real samples, xr, to class 1; and L(xg,0),
the loss from classifying generated samples, xg , to class 0.
The generator loss, LG(xg,1) is based solely on generating
samples such that the discriminator classifies them to as real
(class 1). Fig. 1 shows a visual explanation of the GAN
framework. The equilibrium of the GAN game is achieved
when the generator can create perfectly realistic signals, so
that even a perfect discriminator cannot distinguish them from
real ones.

The introduction of GANs allowed DNNs to generate
increasingly realistic signals such as faces or scenes [23].
However, basic GANs, sometimes known as vanilla GANs,
remain difficult to train. To improve both the final outcome as
well as increase the stability of GAN training, many variations
on the GAN framework have been published. Goodfellow et
al. [24] suggested label smoothing, historical averaging, and
minibatch discrimination. Arjovsky et al. [25], [26] showed
that KL divergence between real and fake sample outputs of
the discriminator, the commonly used loss function in GAN
training, suffered from vanishing gradients, and suggested us-
ing the Wasserstein distance instead. The corresponding GANs
are referred to as Wasserstein GANs (WGANs). Gulrajani et
al. [26] presented the gradient penalty as a way to increase
the stability of WGAN training. Other improvements include
using a conditional generator based on class labels [27], [28],
and conditioning the generator on an input signal [29] to
transform the output.

Basic GANs, mentioned above, are limited in performance
as well as difficult to train. This makes vanilla GANs insuffi-
cient for the challenging task of representing the true distribu-
tions of appliance level power signatures. When approaching
the development of our own GAN model, we considered two
specific versions of GAN – Progressively growing GAN [30],
and EEG-GAN [31], both of which use the WGAN loss with
gradient penalty as the underlying GAN loss.

Karras et al. [30] have shown that it is beneficial to train
GANs in stages. At first, coarse structure is learnt by training a
GAN on highly downsampled signals. After sufficient training,
the next stage of the GAN is added and the signal resolution
is doubled. At this stage the weights that had previously
been learnt are kept and additional layers are added. On the
generator side, the layers are added at the end; whereas, on
the critic side they are added at the beginning.

In [31] Hartmann et al. present EEG-GAN, an adaption
of [30] for the generation of electroencephalogram signals.
The training algorithm closely resembles that of [30], with
modified architectures for generating 1-D time-series data
instead of images. Despite the similarity in training, the
authors do present several modifications in EEG-GAN, the
combination of which was novel at the time of publication.
One of particular importance to TraceGAN is the weighted,
one-sided gradient penalty, which is adopted by TraceGAN
and expanded on in Section III-A.

B. Power Data Synthesizers

The challenges presented by the available long-term disag-
gregation datasets have motivated several efforts to generate
synthetic data for NILM. These efforts, varying in sophistica-
tion and scope, focus on generating realistic aggregate signals.
In contrast, the proposed TraceGAN is focused on appliance-
level traces. Nonetheless, these power data synthesizers all
employ some techniques for simulating appliance-level data
before layering it to create the aggregate.

SmartSim [19] was one of the first such power data syn-
thesizers. SmartSim’s appliance level simulation is performed
by matching each appliance with one of four possible energy
models: ON-OFF, ON-OFF with growth/decay, stable min-
max, and random range models. Reasonable parameterizations
for each of these models were extracted by the authors
from real instances of the specific appliances in the Smart*
dataset [32]. The estimation of these values directly from
real data, taken from the Smart* dataset, inherently limits
SmartSim’s ability to capture the variability of real appliances.
Furthermore, by copying these parameters from real data,
SmartSIM provides no new appliance-level traces.

The Automated Model Builder for Appliance Loads (AM-
BAL) [18] and its recent iteration, ANTgen [21], approach ap-
pliance models similarly. They employ the same four general
appliance classes with the addition of compound model types.
Compound models are combinations of the four basic models,
and are generally a better fit to real-world appliances. Model
parameters are determined using the ECO [17] and Tracebase
datasets [16] where active segments of each appliance are
broken up according to possible internal state changes. Rather
than deciding a priori the model class for a particular appli-
ance, AMBAL/ANTgen selects the model fit that minimizes
the mean absolute percentage error.

SynD [20] is a similar effort that instead categorizes ap-
pliances as either autonomous or user-operated. Autonomous
appliances include constantly-on loads (such as a router) or
appliances that are cyclic in their operation patterns (such as
a fridge). User-operated appliances can involve single-pattern
operation (such as a kettle) or multi-pattern operation (such as

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 3

a dishwasher or programmable oven). On the appliance level,
power traces for SynD were measured directly by the authors
and stored as templates.

The extraction of appliance models directly from real data
restricts the ability of these generators to provide truly novel
appliance-level traces. However, the aim of these generators
is to synthetically expand the space of realistic aggregate
signals, which has and will continue to contribute to the NILM
community. In contrast, our work focuses on appliance-level
modeling, moving past the parameterization of pre-specified
appliance models, and instead making use of the rapidly
developing generative-adversarial framework to elucidate en-
tire distributions over appliance behaviour. Note that we do
not compare with SHED [33], which uses similar methods,
because it is designed for commercial buildings rather than
residential ones.

It is also important to note that GANs have been used
for NILM in [12], [13], [34]. In [34] a pretrained GAN
generator is used to replace the decoder side of a denoising
autoencoder based disaggregator. In [12], [13], GANs were
heavily conditioned on aggregate data and simply used as a
refinement method for supervised disaggregation using con-
volutional neural networks. However, none of these works
use GANs for the purpose of generating new data, evaluate
their models using conventional GAN metrics, or made their
models publicly available, and as such are not comparable with
TraceGAN.

III. METHODOLOGY

A. TraceGAN

Both progressive growing of GANs and EEG-GAN intro-
duce novel methods of training GANs, with a variety of tech-
niques for improved performance and reliable convergence.
However, neither of the two methods takes advantage of
class labels. Inspired by [27], [28], we extend EEG-GAN by
conditioning both the generator and the critic on the specific
appliance label. We name our framework TraceGAN — a
conditional, progressively growing, one dimensional WGAN
for generating appliance-level power traces.

The basic architecture of TraceGAN is similar to the EEG-
GAN adaptation of [30]. TraceGAN contains six generator
and critic blocks, each comprised of two convolutional layers
and an upsampling, or downsampling layer respectively. The
blocks, which are added progressively throughout the training
procedure, correspond to different sampling frequencies such
that, as we add each additional block, we increase the sampling
rate by a factor of 2. Throughout the training process the
input to the generator remains the latent code z ∼ N (0, INz

)
(an Nz-dimensional random vector of i.i.d standard-normally
distributed variables). Conversely, the real samples used as
input to the critic are downsampled as necessary to match the
current frequency of the generator output. We perform this
downsampling using max-pooling in order to preserve shorter
activations while maintaining sharp edges.

Following the process in [30], [31], we perform a fading
procedure each time a new block is added. Fading prevents
the newly introduced layers, which begin with randomly
initialized wrights, from affecting the weights of previously

Fig. 2. The fading procedure proposed by [30] as adapted for time-series data
in [31] and TraceGAN. We begin at stage (a) with a stable generator and critic,
both trained for a sufficient number of epochs, during an intermediate stage
of training; note that generator (critic) contains a upsampling (downsampling)
step. The blocks “To Time-Series” and “From Time-Series” are implemented
via 1D convolution. In (b), we see the fading stage used to introduce the next
block to both the generator and the critic. On the generator side, the output
of new blocks is slowly faded in, using a linearly growing parameter α, with
a nearest neighbor upsampling of the output of the stable blocks. Similarly,
on the critic side, the features created by the new block are slowly merged
in with previous inputs to the existing critic blocks. Finally, (c) shows the
blocks after the fading is complete and α = 1. Note that the generator and
critic now contain one additional stable block each
. In TraceGAN, this fading is performed over 1000 epochs,
allowing for knowledge obtained at earlier steps of training

to slowly adapt as new layers are added.

trained layers, without the need to freeze them. Thus allowing
those layers to fine-tune as we continue training. At each
iteration of the fading procedure, we begin with a certain
configuration of the model, in which all existing blocks have
already been trained for a sufficient number of epochs — this
is stage (a) in Fig. 2. We consider these blocks to be stable,
and proceed to fade in the new block. During fading, seen
in stage (b) of Fig. 2, the output of a new block of layers
is scaled by a fading parameter α and added to the output of
existing layers, which is scaled by 1−α. The fading parameter
itself grows linearly from 0 to 1 over EPf = 1000 epochs.
Finally, once the fading is finished, we have a new stable
configuration containing one additional block, seen in stage (c)
of Fig. 2. This stable configuration is trained for an additional
1000 epochs until we repeat the process and fade in another
block. All layers remain trainable throughout the process and
the corresponding dimensionality discrepancies are resolved
by a simple 1 × 1 convolutional layer. An illustration of this
process is shown in Fig. 2.

A major novelty in TraceGAN is the introduction of con-
ditioning, both for the generator and the critic, on the desired
appliance label. Following the concepts presented in [27], we
choose to condition our GAN on the input labels by including
the class label as an input to both the critic and the generator.
On the generator side this is done by replacing the latent code

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 4

input with Z ∈ RNz×C = [zT0 , z
T
1 , ...,z

T
C ] such that:

zTi =

{
zT i = l

0T otherwise
(1)

where Nz is the latent space dimension, z ∈ RNz is the
latent code, C is the number of different labels in the dataset,
and l is the current label. In practice, this is performed by
extending both the latent code and the one-hot labels to
RNz×C and multiplying the resulting tensors. To accommodate
for the added capacity required by the conditional generator,
we increase the amount of features in the input stage by a
factor of C compared with the rest of the network. On the
critic side, we simply extend the one-hot labels to RNs×C ,
where Ns is the current signal length, and concatenate the
resulting tensor to the input signal, as illustrated in Fig. 3.

The benefits of conditioning in GANs are numerous, and
are discussed at length in the original papers [27], [28]. One
significant such benefit is that conditioning allows the user
to train a single model to perform the generation of all the
desired classes. Without conditioning, one would be required
to choose between training a model on all appliances without
the ability to control the class of the generated samples, or
training a model individually for each appliance class. The
former case is trivially inferior, since the very purpose of
TraceGAN is to generate realistic appliance-specific power
traces. The latter can no doubt be accomplished, but requires
additional training, computation, and memory resources to
come up with a separate model for each class. It is also far
less elegant than having a single model that could generate all
desired classes.

In TraceGAN, we also adopt many of the smaller, nuanced,
practices proposed in [30], [31]. As suggested in [30], to
alleviate growing magnitude issues, we strictly normalize each
time-step in each feature map to have an average magnitude
of 1. To improve convergence during training, we employ on-
line weight scaling (instead of careful weight initialization). To
increase the variation of generated signals, we use a simplified
version of minibatch discrimination, as proposed in [30] and
modified in [31], wherein the standard deviation is used as an
additional feature for the final layer of the critic. The minibatch
standard deviation is calculated first at each feature, at each
time-step, and then averaged across both features and time to
give one single value for the entire batch.

Furthermore, we use the weighted one-sided variation of
the gradient penalty, as proposed in [31], and modify it to
accommodate the conditional critic and generator. The gradient
penalty’s importance, as noted in [31], depends on the current
value of the Wasserstein distance

DW = Exg
[Dα(xg, l)]− Exr

[Dα(xr, l)] (2)

where Dα is the critic output corresponding to the current
fading parameter α, xg are the generated samples, xr are
real samples, and l is the appliance class label. When DW

is large, it is important to ensure that the cause isn’t the
loss of the 1-Lipschitz constraint. However, when the DW

is low, it is worthwhile to focus on optimizing it directly,
and assign a lower weight to the gradient penalty. In practice,

this is achieved by giving an adaptive weight to the gradient
penalty equal to the current DW . It is important to note that
this weight is treated as a constant for gradient purposes, to
avoid undesirable gradients. The gradient penalty itself is one-
sided, meaning it allows for the critic to have a smaller than
1-Lipschitiz constraint, as was considered but ultimately not
chosen in [26]. In this form the gradient penalty becomes:

LGP = λ ·max(0, DW ) · Ex̃∼Px̃

[
max

(
0, ‖∇x̃Dα (x̃, l)‖2 − 1

)2]
(3)

where DW is taken from Eq. 2, λ = 10 is the weight
coefficient for the gradient penalty, and x̃ is a randomly
weighted mixture of pairs of real and generated samples, each
with the same label l. Recall that DW here is treated as a
constant for back-propagation purposes.

Finally, we use a small loss component to center critic
output values around zero, also introduced in EEG-GAN [31]:

LC = ε ·
(
Exr [Dα(xr)] + Exg [Dα(xg)]

)
(4)

where ε � 1, and xr, xg are real and generated samples,
respectively. This loss helps with numerical stability as well
as interpretation of the loss value during training. Combining
all of the above, the final loss functions of the critic (LD) and
the generator (LG) in TraceGAN are:

LD = Exg [Dα(xg, l)]− Exr [Dα(xr, l)] + LGP + LC (5)
LG = −Exg [Dα(xg, l)] (6)

Another important difference between TraceGAN and [31]
is in the method of resampling the signals. In [31], after com-
paring various methods, the authors use strided convolutions
for downsampling in the critic, average pooling for downsam-
pling the input data, and either linear or cubic interpolation
for upsampling in the generator. We find that given the quick
switching nature of appliance power traces, it is important to
allow for high frequency changes in the signal, even at the
price of some aliasing. For this reason we downsample the
input signals using maxpooling, and perform the upsampling
steps in the generator with nearest-neighbour interpolation.

B. Training

TraceGAN was trained using the REFIT [15] dataset. RE-
FIT consists of active power consumption data (measured
in watts) from 20 residential homes, at the aggregate and
appliance level, sampled at 1/8 Hz. The REFIT dataset was
prepared by following the prescription of some recent work
to ensure consistent sampling [9]. Because not all of the 20
houses contain the same appliances, we chose appliances that
were available in multiple houses. We also wanted to ensure
that these appliances were relatively prevalent, were significant
in their contribution to whole-house energy consumption, and
that they exemplified each of the four appliance types as
defined by [1] (and expanded by [10]): ON-OFF, Multi-
state, Variable Load, and Always-ON (or periodic). Of the
appliances available in REFIT, five that satisfied the above
considerations were used: refrigerators (along with freezers,
and hybrid fridge-freezers), washing machines, tumble dryers,
dishwashers, and microwaves.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 5

Fig. 3. TraceGAN’s method of conditioning the generator and critic. On the generator side (left), the input latent code and the one-hot class label are both
extended and then multiplied. Effectively, this is equivalent to placing a copy of the latent code in the corresponding column matrix which is zero everywhere
else. On the critic side (right), we perform a similar extension of the class labels, but then simply concatenate the resulting tensor to the input signal.

Of course, due to the data balancing procedure described
below, TraceGAN can be used to generate novel instances
of all appliance in the dataset, including less prevalent ones.
However, appliances with fewer unique occurrences will likely
result in the reduction of the diversity of generated samples
in that appliance class. Each instance of these five appliances
were arranged into approximately five hour windows, centered
around the available activations. We located these activations
by first-order differences in power that were larger than 50
watts.

Windows were then filtered according to two conditions:
First, the energy contained in the window should be apprecia-
bly larger than the “steady-state” contribution to the energy
(taken here to be the sum of the window mean and half the
window standard deviation). In other words, after ignoring the
samples less than this value, the remaining energy contained
in the window should be above some threshold, set in our
work to be 33.33 Watt-hours. This condition ensures that low-
energy windows, where the activation was falsely detected due
to sensor noise, are excluded. This condition also filters out
windows that may contain significant energy, but have little
useful structural information - mainly windows composed of
a constant level of power.

Secondly, we calculate the Hoyer sparsity metric [35], S, for
δ(wi) - a vector of length n containing the discrete first-order
differences in each window wi:

Sδ(wi) =

√
n− ‖δ(wi)‖1

‖δ(wi)‖2√
n− 1

(7)

where ‖δ(wi)‖1 and ‖δ(wi)‖2 are the `1 and `2-norms of
δ(wi), respectively. At its extremes, the Hoyer sparsity metric
is zero when every sample in δ(wi) is the same (meaning the
`1-norm is larger than the `2-norm by a factor of

√
n), and

unity when there is only one non-zero sample in δ(wi) (i.e.,
highly sparse). By requiring the sparsity metric to be larger
than 0.5, we ensure that windows are not overly noisy, further
maximizing the structural information contained in them. The

windowing procedure was further constrained by requiring the
separation between windows to exceed half of the window
size, avoiding capturing the same activation many times (e.g.,
in the case of appliance activations with significant noise or
quick switching).

The remaining windowed dataset was then balanced by
forcing a desired number of activation windows for each
instance of each appliance (a house can have zero, one, or
more instances of each appliance type). In the case of over-
representation, a random subset of 300 windows was selected,
of which a random 100 windows contributed to each training
epoch. In the case of under-representation, those appliance
instances with fewer than 100 activation windows (but more
than 5) had their windows randomly repeated such that there
were a total of 100 windows for each appliance instance.
Finally, to ensure equal representation in the training set, the
number of appliance instances was itself balanced by randomly
repeating under-represented appliances. All windows of each
given appliance were then shifted and scaled according to the
overall mean and standard deviation of the entire dataset.

Finally, before every epoch, windows were shifted randomly
in time to avoid biasing the network towards specific activation
locations within each window. The shifted windows were then
downsampled to match the resolution of the current training
stage. We utilized the Adam [36] optimizer for training
TraceGAN, setting lr = 0.001 and β = (0, 0.99) We trained
each stage of TraceGAN for 2000 epochs, out of which the
first 1000 included fading with linearly changing weights. See
Algorithm 1 for full details.

IV. EXPERIMENTS

We present both a qualitative analysis of the TraceGAN-
generated power traces as well as their quantitative evaluation,
based on adaptations of commonly used GAN evaluation
methods to 1-D power traces. We compare quantitative metrics
with two other appliance power trace synthesizers: SynD [20],
and ANTgen [21], which is a more up-to-date version of
AMBAL. SmartSim [19] is not included in the comparison

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 6

because the published sample data is of insufficient size for
accurate comparison with other methods in these experiments.

When generating signals using TraceGAN, we found it
beneficial to add two simple post-processing steps: we ensure
that at any given time-step the generated power is larger than
zero; and we discard any generated signals that do not meet the
energy threshold designated for the training data (and replace
them with new generated samples).

Algorithm 1 TraceGAN Training Procedure
Input: Real samples with corresponding labels (xR, l) ∈ XR;

Conditional Generator G(z, l); Conditional Critic D(x, l);
optimizers for G,D.

Parameters: Nb: Number of blocks for G,D; EPb = 2000:
number of training epochs per block; EPf = 1000 :
number of fading epochs; R: ratio of critic to generator
training iterations.

1: for n = 1, 2, . . . , Nb do
2: Add Block to G,D
3: for ep = 1, 2, . . . , EPb do
4: Set α = min(1, ep/EPf )
5: Set Gα, Dα according to Fig. 2
6: Randomize appliance starting points

and downsample XR by 2Nb−n

7: Select a minibatch of real samples and labels: xR, l
8: Generate a mini-batch of samples using

labels: xG = Gα
(
z vN(0, I), l

)
9: LD = Exg

[Dα(xg, l)]− Exr
[Dα(xr, l)] + LGP + LC

10: Take optimizer step for D
11: if ep == 0 mod R then
12: generate a mini-batch of samples using

labels: xG = Gα
(
z vN(0, I), l

)
13: LG = −Exg

[Dα(xg, l)]
14: Take optimizer step for G
15: end if
16: end for
17: end for
All expected value operations are approximated using the
sample mean of the minibatch.

A. Quantitative Evaluation

Tasks such as segmentation, classification, regression, or
disaggregation, are relatively easy to evaluate because they
have a well-defined goal. While there are several different
approaches to evaluating NILM [37], all methods utilize a
well-defined ground truth, such as appliance power consump-
tion or state. Unfortunately, no such ground truth exists when
attempting to evaluate randomly generated signals. In fact, the
attempt to assign a numerical value to measure the quality of
a GAN framework is in itself a significant and challenging
research problem [38]. To evaluate TraceGAN, we choose
three commonly used GAN evaluation metrics, and adapt them
to be applicable for power trace data.

Inception score (IS) [24] uses a pre-trained DNN-based
classifier named Inception [39], to evaluate the quality of
generated signals. To calculate IS, a batch of generated

samples are classified using the pre-trained model. The out-
put of this classifier can be seen as the probability that
a sample belongs to each target class. A good generator
is realistic, meaning we expect low entropy for the output
of the classifier. Simultaneously, a good generator is also
diverse, meaning we expect high entropy when averaging
out all classifier outputs. To include both requirements in
one numerical measure, [24] defines the Inception score as
IS = exp

(
E
[
DKL

(
p (y|x) ‖ p (y)

)])
, where DKL is the KL

divergence, y is the Inception model’s predicted class, and x
are the inputs being scored.

Because the IS is not an objective metric, it is common to
compare the generator’s score with the score obtained from
real data. Because no such classifier is commonly used for
power trace signals, we train our own model, using a one
dimensional ResNet [40] architecture. To avoid biasing the
model towards TraceGAN we also include training data from
ECO [17] and Tracebase [16], as they were the foundation
used for the ANTgen power traces. The real power traces, used
as foundation for SynD, were not published, so they could not
be included in classifier training. We then evaluate the IS in
batches and present the mean and standard deviation for each
generator, as well as the real data.

While IS has shown good correlation with human classifi-
cation of real versus generated samples, it is not without its
flaws. It is highly sensitive to noise and to scale, as well as
mode collapse. For example, if a model can generate exactly
one, highly realistic, sample for every class, it will achieve
near perfect IS, without actually being a diverse generator.
To avoid some of these pitfalls, [41] introduced the Frechet
Inception Distance (FID). The FID uses the same classifier as
IS, but instead of measuring probabilities directly at the output,
it evaluates the distributions of features in the final embedding
layer of the classifier. FID measures the Wasserstein 2-distance
between the distribution of real and generated signal features,
under a Gaussian assumption (which allows a closed-form
solution). The FID is significantly less sensitive to mode
collapse and noise, yet still struggles with models that directly
copy large portions of the training set. Because FID is a proper
distance, its value can serve as a more objective metric. We
evaluate FID using the full set used for training our ResNet
classifier, and generate an equivalent amount of data from each
synthesizer.

A similar approach to FID, the sliced Wasserstein distance
(SWD) [30] attempts to evaluate the difference between the
distributions of real and generated signals directly. SWD uses
1-D projections to estimate the Wasserstein distance between
two distributions, taking advantage of the closed form solution
for the distance of such projections. In practice, the SWD is
itself approximated using a finite set of random projections. It
is common to evaluate SWD on some feature space, to make
it more robust. For our work, we compare two possible feature
sets: the classifier features used for FID, and a Laplacian
“triangle” (a 1-D adaption of a Laplacian pyramid) using a
15-sample Gaussian kernel. Similarly to FID, we evaluate the
SWD on the entire training set, and we use 10 iterations
of 1000 random projections each, calculating the mean and

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 7

Fig. 4. Examples of appliance power traces generated by TraceGAN, alongside their real counterparts taken from REFIT. We can see here that the generated
signals follow the real data closely, yet without direct copying, in important attributes such as power levels, overshoot, quick switching, and more.

standard deviation along the iterations. Table I summarizes
the results for all the metrics described above.

For completeness, we have also evaluated each of the appli-
ance classes individually, using the FID, and both variations
of the SWD. The IS, by its definition, is not appropriate
for the evaluation of instances of a single class and thus is
not included in this analysis. Although TraceGAN performs
well in the appliance-specific comparisons as well, we believe
such appliance-specific metrics fail to paint the full picture.
For this reason, we present their result and the corresponding
discussion in the Appendix.

TABLE I
SYNTHESIZED APPLIANCE PERFORMANCE EVALUATION

Generator IS FID SWD∗
Lap SWDCl

Dataset 3.77± .15 0 0 0
ANTgen 3.73± .11 69.63 45± .029 0.31± .017

SynD 3.18± .10 76.09 22± .011 0.33± .015
TraceGAN 3.81 ± .13 43.30 18 ± .088 0.25 ± .011

∗SWDLap values were calculated using Laplacian “triangle” features were
scaled by 10−3. SWDCl values were calculated using the last layer of
classifier features, similarly to the Frechet Inception distance.

Several things stand out when reviewing the quantitative
results. First, we notice TraceGAN receives the highest Incep-
tion score, outscoring both SynD and ANTgen in a statistically
significant manner (t-test p ≤ 1e−5). TraceGAN even slightly
outscores the real data, although not in a statistically signif-
icant manner (t-test p = 0.38). We believe this is caused by
the existence of some inevitably mislabeled data in REFIT.
When collecting sub-meter data for NILM applications, the
wiring of certain houses makes it difficult to avoid having more
than one appliance on each sub-meter. This means that often
a sub-meter designated as one appliance (such as fridge or
dishwasher) will contain measurements from a smaller, or less

commonly used appliance (such as a kettle or battery charger).
The presence of such activations may lead to a lower Inception
score in the real data, but effects TraceGAN to a lesser extent.

Secondly, we notice that the diversity of TraceGAN-
generated signals is noticeable when reviewing the more
advanced metrics. In both variations of the SWD as well as
FID, TraceGAN outperforms the other two synthesizers in a
statistically significant manner (t-test p ≤ 9e−4). We believe
that the combination of these scores shows that TraceGAN is
capable of generating samples that are comparable, in terms of
realism, with copying or hand-modeling real data directly (as
done by SynD and ANTgen), while at the same time creating
diverse and truly novel appliance power signatures.

B. Qualitative Analysis

When evaluating our generated signals, we focus on the
traces’ realism as well as their variety and novelty. We find
that TraceGAN is able to generate highly realistic-looking ap-
pliance traces while avoiding directly copying existing appli-
ances from REFIT. In addition, we notice that the generator’s
diversity exists both between classes and within each class.

Fig. 4 shows an example of generated signals from each
of the five trained appliances, along with similar real power
traces. We can see that the generated signals present highly
comparable behaviours and contain all of the major features
of each appliance class. Some important attributes in the
generated signals are shown below, by class:

• Fridges - generated fridge traces maintain the periodic
nature of real refrigerators. We see small variation in both
frequency and duty cycles of the activations, with minor
differences within an activation and larger differences
between different samples. In addition, generated fridges
maintain the initial spike in power consumption.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 8

Fig. 5. Examples of generated and real fridges. There is diversity in the generated fridges in terms of frequency, duty cycle, overshoot size, and more.
TraceGAN generates some artifacts such as an overshoot at the end of an activation, as well as some power variations within a given activation.

• Washing Machines - generated washing machine traces
manage to convey the complicated state transitions of the
various washing cycle states. We see quick fluctuations
in power consumption, typical of the machine’s internal
heating unit switching on and off. Additionally, the gen-
erator is able to generate the variable load which occurs
during the washing machine’s spin cycle.

• Tumble Dryers - generated tumble dryer traces are able
to maintain the characteristic drop in power consumption
that occurs periodically when the dryer changes direction.
Furthermore, TraceGAN is able to capture the usage
characteristics of a dryer, occasionally including more
than one activation in a 5-hour window.

• Dishwashers - generated dishwasher traces manage to
maintain the multi-state properties of the original dish-
washers, without incurring significant amount of switch-
ing noise or any major artifacts.

• Microwaves - generated microwave traces portray the
low duty cycle of real microwaves, which are generally
only used occasionally for periods of a few minutes at
most. In addition, TraceGAN is able to generate traces
that include quick switching of the microwave oven,
which can occur during more advanced microwave modes
such as a defrost program.

While TraceGAN generates realistic data for the most part,
some issues still exist. The generated signals occasionally
contain artifacts that are rare in real signals, such as an
overshoot before deactivation, power fluctuations within a
given state, or unlikely activation duration. When analyzing
these artifacts, we note that examples of such behaviour exist
in the real data, albeit rarely. We believe that these behaviours
appear in TraceGAN because in the training procedure, such
artifacts become central in identifying appliances, leading to
them carrying significant gradients to the generator.

In order to demonstrate the diversity of the power traces

generated by TraceGAN, we present six examples of generated
and real fridge signals in Fig. 5. We note that like the real
fridge power traces, the generated signals vary in several
important features: power level, activation frequency, duty
cycle, and overshoot size. In addition, the generated signals
demonstrate some variations in each of the above parameters
within an activation window, similarly to real fridges.

C. Data Augmentation Scenario for NILM

One possible use of TraceGAN is as a data augmentation
tool for training NILM solutions. In order to demonstrate
this, we build a toy scenario using the denoising autoencoder
(DAE) method [8], as implemented in the NILMTK-contrib
repository [42]. In this scenario, we first create a benchmark
by training a DAE for four appliances in the REFIT dataset
- refrigerators, washing machines, dishwashers, and tumble
dryers. These are 4 of the 5 appliances on which TraceGAN
was trained. We then compare these benchmark models with
additional models trained using TraceGAN-generated samples
for augmentation in several configurations described below.

Since the DAE is trained for each appliance individually, we
train four different models for each configuration. Each model
is trained on one appliance using data from all houses in RE-
FIT that contained exactly one instance of the corresponding
appliance (here we avoid houses with multiple instances for
simplicity). The models are trained on the raw aggregate data,
without filtering windows into active and non-active ones, and
the entire duration of the dataset was used. We train each
model for 200 epochs, using the Adam optimizer, with a 90-
10 training-validation split of the dataset, saving the model
that performs best in terms of validation loss.

Due partly to the properties of the REFIT dataset, the
choice of initial learning rate, as well as the relative simplicity
of the DAE architecture, the minimum validation loss was
achieved quite early for some appliances (e.g., within 15

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 9

TABLE II
TRACEGAN AUGMENTED TRAINING RESULTS - REFIT HOUSE 5

Scenario Fridge Tumble Dryer Washing Machine Dishwasher
RMSE MAE F1 RMSE MAE F1 RMSE MAE F1 RMSE MAE F1

Benchmark 62.5 43.9 73.5 291.5 97.5 50.1 203.0 48.3 24.0 216.8 43.9 44.6
1% Augmentation 64.8 48.5 70.0 215.9 69.2 60.2 162.5 31.6 31.3 211.8 43.5 44.9
2% Augmentation 64.5 46.2 71.4 224.2 71.5 59.2 165.1 34.5 30.8 218.5 44.0 45.4
5% Augmentation 61.6 42.9 74.0 207.6 66.5 61.3 165.0 39.4 29.4 211.4 47.3 43.8

TABLE III
TRACEGAN AUGMENTED TRAINING RESULTS - RAE HOUSE 1, BLOCK 2

Scenario Fridge Tumble Dryer Washing Machine Dishwasher
RMSE MAE F1 RMSE MAE F1 RMSE MAE F1 RMSE MAE F1

Benchmark 67.3 59.2 55.5 395.0 132.1 17.2 137.5 50.6 5.9 370.4 116.7 5.6
1% Augmentation 66.8 57.3 55.6 409.5 97.6 21.4 129.6 34.0 6.7 372.9 118.1 4.7
2% Augmentation 66.7 57.8 55.5 408.3 120.3 18.3 143.0 42.5 5.9 404.2 125.3 4.8
5% Augmentation 66.4 58.0 55.4 426.2 134.2 16.7 189.8 55.4 6.1 387.0 125.1 3.1

epochs for the tumble dryer). Given that the validation set
did not include any TraceGAN-generated samples, we would
expect that the validation performance of models trained with
the augmented datasets would reach their respective maxima
earlier due to the relative richness of the augmented training
sets. For this reason, we instead terminated training in the
augmented scenarios after an additional 10 epochs following
the benchmark minimum validation loss.

The augmentation scenarios include randomly replacing p
percent of the ground truth appliance data with TraceGAN-
generated activations before every training epoch. Note that
because most appliances are only used for a small fraction of
the time, p must be relatively small (for example, the washing
machine is active for approximately 2.5% of the total duration
of the REFIT dataset). We then compare the benchmark
models and the augmented models for p ∈ {1, 2, 5}%, by
evaluating the performance on house 5 in the REFIT dataset
(part of which was included in the training set), as well as
house 1, block 2 in the RAE dataset [43]. We use the following
metrics for comparison: root mean square error (RMSE, in
watts); mean absolute error (MAE, in watts), and F1 score (in
%). The results are summarised in Tables II and III.

The results in Tables II and III demonstrate the benefits of
using TraceGAN data-augmentation in training NILM models.
Notably, models trained on augmented datasets outperform
the benchmark models in most scenarios, with the dominant
augmentation changing slightly between different appliances
and datasets. Within the REFIT dataset, we can see the benefits
of TraceGAN augmentations as a form of regularization,
dissuading the DAE model from overfitting during training. At
least to some degree, the benefits of this regularization can be
seen when evaluating the models on the RAE dataset, as shown
in Table III. It is important to note that attempting to generalize
learned models across continents (Europe to North America)
is likely an ambitious task relative to the usual use-case for
supervised NILM, due to the appliance instances being very
different from those seen in training.

Of the two appliances performing with some reasonable
degree of accuracy on the RAE dataset (the fridge and tumble

dryer), the augmented datasets nearly always provide perfor-
mance improvements over the benchmark, if only marginally
so. On the dishwasher and washing machine, we note that
the performance indicates that the instances found in the RAE
dataset are vastly different to those found in REFIT. Thus, all
results in these scenarios are poor, and any improvement or
degradation in performance lacks actual significance.

Important to note is the limitation of the augmentation
scenario at the outset: TraceGAN is concerned with appliance-
specific generation, not the realistic aggregation of the result-
ing traces. In this experiment, we added TraceGAN generated
windows at random in the dataset, which is highly unlikely to
be the optimal augmentation technique. It is likely the case that
creating aggregate signals using a combination of TraceGAN
and user-behaviour modeling, as used in ANTgen or SynD,
will allow additional performance benefits to be gleaned from
synthetically augmented datasets.

V. CONCLUSIONS

After identifying the need for synthetic data generation for
NILM, we presented here the first GAN-based synthesizer
for appliance power traces. Our model, named TraceGAN, is
trained in a progressive manner, and uses a unique condition-
ing methodology to generate multiple appliance classes using
one generator. We have also implemented some groundwork
for evaluating power trace generators which, as expected,
requires more than one metric in order to evaluate the various
requirements from synthesizers. Using these metrics, along
with visual inspection of the generated samples, we have
shown that TraceGAN is able to produce diverse, realistic
power appliance signatures, without directly copying or hand-
modeling the training data. Additionally, we presented a sim-
plistic scenario for using TraceGAN as a data augmentation
tool for training a NILM model.

While the results presented in this paper are based on
training on the REFIT dataset, the presented framework can
be used for training on any desired dataset, and at any
sampling frequency. We believe that these properties may
help researchers build upon our simplistic example, and use

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 10

TraceGAN as an augmentation tool for training supervised
NILM solutions, perhaps in conjunction with the techniques
proposed in [20], [21]. The TraceGAN generator can be
used to replace certain activation windows in the real data
with synthesized ones, with the hope of improving out-of-
distribution performance. In order to adapt TraceGAN to fit
any augmentation or aggregation methods, one can modify
the training procedure of TraceGAN slightly as needed. For
example, changing the activation window sizes, or removing
the random time shift during training, if a well-localized
activation is preferred for disaggregation.

REFERENCES

[1] G. W. Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE,
vol. 80, no. 12, pp. 1870–1891, Dec. 1992.

[2] A. Rodriguez-Silva and S. Makonin, “Universal Non-Intrusive Load
Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack,
and Labelled Partition Maps,” in 2019 IEEE PES Asia-Pacific Power
and Energy Engineering Conference (APPEEC), 2019, pp. 1–6.

[3] Q. Liu, K. M. Kamoto, X. Liu, M. Sun, and N. Linge, “Low-complexity
non-intrusive load monitoring using unsupervised learning and general-
ized appliance models,” IEEE Trans. Consumer Electronics, vol. 65,
no. 1, pp. 28–37, 2019.

[4] S. Makonin, F. Popowich, I. V. Bajić, B. Gill, and L. Bartram, “Ex-
ploiting HMM sparsity to perform online real-time nonintrusive load
monitoring,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2575–2585,
2016.

[5] R. Bonfigli, E. Principi, M. Fagiani, M. Severini, S. Squartini, and
F. Piazza, “Non-intrusive load monitoring by using active and reactive
power in additive factorial hidden markov models,” Applied Energy, vol.
208, pp. 1590–1607, 2017.

[6] F. M. Wittmann, J. C. Lopez, and M. J. Rider, “Nonintrusive load
monitoring algorithm using mixed-integer linear programming,” IEEE
Trans. Consumer Electronics, vol. 64, no. 2, pp. 180–187, May 2018.

[7] M. Z. A. Bhotto, S. Makonin, and I. V. Bajić, “Load disaggregation
based on aided linear integer programming,” IEEE Trans. Circuits and
Systems II: Express Briefs, vol. 64, no. 7, pp. 792–796, July 2017.

[8] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural
networks applied to energy disaggregation,” in Proc. 2nd ACM
International Conference on Embedded Systems for Energy-Efficient
Built Environments, ser. BuildSys ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 55–64. [Online].
Available: https://doi.org/10.1145/2821650.2821672

[9] D. Murray, L. Stankovic, V. Stankovic, S. Lulic, and S. Sladojevic,
“Transferability of neural network approaches for low-rate energy dis-
aggregation,” in ICASSP 2019-Int. Conf. Acoust. Spee. IEEE, 2019,
pp. 8330–8334.

[10] J. Kim, T. T. H. Le, and H. Kim, “Nonintrusive Load Monitoring Based
on Advanced Deep Learning and Novel Signature,” Computational
Intelligence and Neuroscience, vol. 2017, no. 4216281, 2017.

[11] A. Harell, S. Makonin, and I. V. Bajić, “Wavenilm: A causal neural
network for power disaggregation from the complex power signal,” in
ICASSP 2019 - Int. Conf. Acoust. Spee. IEEE, 2019, pp. 8335–8339.

[12] M. Kaselimi, A. Voulodimos, E. Protopapadakis, N. Doulamis, and
A. Doulamis, “Energan: A generative adversarial network for energy
disaggregation,” in ICASSP 2020 - Int. Conf. Acoust. Spee. IEEE,
2020, pp. 1578–1582.

[13] Y. Pan, K. Liu, Z. Shen, X. Cai, and Z. Jia, “Sequence-to-subsequence
learning with conditional gan for power disaggregation,” in ICASSP 2020
- Int. Conf. Acoust. Spee., 2020, pp. 3202–3206.

[14] S. Makonin, B. Ellert, I. V. Bajić, and F. Popowich, “Electricity, water,
and natural gas consumption of a residential house in Canada from 2012
to 2014,” Scientific Data, vol. 3, no. 160037, pp. 1–12, 2016.

[15] D. Murray, L. Stankovic, and V. Stankovic, “An electrical load mea-
surements dataset of united kingdom households from a two-year
longitudinal study,” Scientific data, vol. 4, no. 1, pp. 1–12, 2017.

[16] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov,
M. Werner, and R. Steinmetz, “On the accuracy of appliance identi-
fication based on distributed load metering data,” in 2012 Sustainable
Internet and ICT for Sustainability (SustainIT). IEEE, 2012, pp. 1–9.

[17] C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, and S. Santini, “The
eco data set and the performance of non-intrusive load monitoring
algorithms,” in Proc. 1st ACM conference on embedded systems for
energy-efficient buildings, 2014, pp. 80–89.

[18] N. Buneeva and A. Reinhardt, “Ambal: Realistic load signature gen-
eration for load disaggregation performance evaluation,” in 2017 IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), 2017, pp. 443–448.

[19] D. Chen, D. Irwin, and P. Shenoy, “Smartsim: A device-accurate smart
home simulator for energy analytics,” in 2016 IEEE International
Conference on Smart Grid Communications (SmartGridComm). IEEE,
2016, pp. 686–692.

[20] C. Klemenjak, C. Kovatsch, M. Herold, and W. Elmenreich, “A syn-
thetic energy dataset for non-intrusive load monitoring in households,”
Scientific Data, vol. 7, no. 1, pp. 1–17, 2020.

[21] A. Reinhardt and C. Klemenjak, “How does load disaggregation per-
formance depend on data characteristics? insights from a benchmarking
study,” in Proc. 11th ACM International Conference on Future Energy
Systems (e-Energy), 2020.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[24] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in neural
information processing systems, 2016, pp. 2234–2242.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[26] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in neural infor-
mation processing systems, 2017, pp. 5767–5777.

[27] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[28] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in Proc. 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 2642–2651.

[29] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE conference on
computer vision and pattern recognition, 2017, pp. 1125–1134.

[30] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[31] K. G. Hartmann, R. T. Schirrmeister, and T. Ball, “Eeg-gan: Generative
adversarial networks for electroencephalograhic (eeg) brain signals,”
arXiv preprint arXiv:1806.01875, 2018.

[32] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, J. Albrecht et al.,
“Smart*: An open data set and tools for enabling research in sustainable
homes,” SustKDD, August, vol. 111, no. 112, p. 108, 2012.

[33] S. Henriet, U. Simsekli, G. Richard, and B. Fuentes, “Synthetic dataset
generation for non-intrusive load monitoring in commercial buildings,”
in Proc. 4th ACM International Conference on Systems for Energy-
Efficient Built Environments, 2017, pp. 1–2.

[34] K. Bao, K. Ibrahimov, M. Wagner, and H. Schmeck, “Enhancing neural
non-intrusive load monitoring with generative adversarial networks,”
Energy Informatics, vol. 1, no. 1, pp. 295–302, 2018.

[35] P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” Journal of machine learning research, vol. 5, no. Nov, pp.
1457–1469, 2004.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] S. Makonin and F. Popowich, “Nonintrusive load monitoring (NILM)
performance evaluation,” Energy Efficiency, vol. 8, no. 4, pp. 809–814,
2015.

[38] A. Borji, “Pros and cons of GAN evaluation measures,” Computer Vision
and Image Understanding, vol. 179, pp. 41–65, 2019.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SMART GRID 11

TABLE IV
SYNTHESIZED SINGLE CLASS APPLIANCE PERFORMANCE EVALUATION

Metric Generator Fridge Tumble Dryer Dishwasher Washing Machine Microwave
TraceGAN 7.497 13.21 22.47 21.02 4.84

FID SynD 37.34 N/A 91.88 50.06 52.6372
Antgen 33.39 37.45 44.85 133.50 16.9477

TraceGAN 0.095± 0.00027 0.186± 0.00065 0.057 ± 0.00031 0.030 ± 0.00033 0.102± 0.00034
SWDLap SynD 0.0943 ± 0.000285 N/A 0.129± 0.00052 0.076± 0.00040 0.122± 0.00033

Antgen 0.097± 0.00022 0.104 ± 0.00056 0.077± 0.00083 0.102± 0.00078 0.075 ± 0.00033

TraceGAN 0.0848 ± 0.0047 0.135 ± 0.0085 0.172 ± 0.010 0.20 ± 0.015 0.103 ± 0.0031
SWDCl SynD 0.238± 0.013 N/A 0.422± 0.028 0.28± 0.014 0.255± 0.016

Antgen 0.221± 0.0094 0.223± 0.010 0.262± 0.017 0.519± 0.037 0.151± 0.0067

[41] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in neural information processing systems,
2017, pp. 6626–6637.

[42] N. Batra, R. Kukunuri, A. Pandey, R. Malakar, R. Kumar, O. Krys-
talakos, M. Zhong, P. Meira, and O. Parson, “Towards reproducible
state-of-the-art energy disaggregation,” in Proc. ACM BuildSys, 2019,
pp. 193–202.

[43] S. Makonin, Z. J. Wang, and C. Tumpach, “RAE: the rainforest
automation energy dataset for smart grid meter data analysis,” data,
vol. 3, no. 1, p. 8, 2018.

Alon Harell (S’19) received the B.Sc. (Summa
Cum Laude) degree in electrical and electronic en-
gineering and the B.Sc. (Summa Cum Laude) in
Physics from Tel Aviv University, Tel Aviv, Israel,
in 2012. In 2020, he received the M.A.Sc. degree in
electrical engineering from Simon Fraser University,
Burnaby, BC, Canada, focusing on deep learning
applications for non-intrusive load monitoring. From
2018 to 2020 he was a Research Assistant in the
Computational Sustainability Lab. In 2020 he was
a MITACS intern with SportLogiq developing graph

neural network applications for sports analytics. His research interests include
deep learning theory and applications, sustainability, and more recently sports
analytics. He was awarded the NSERC CGS-M and PGS-D scholarships,
the Graduate Dean Entrance Scholarship, and the British Columbia Graduate
Scholarship (Simon Fraser University).

Richard Jones (S’19) received the B.A. degree
in psychology and philosophy in 2014, and the
B.Sc. (Hons.) degree in physics in 2018, from the
University of Manitoba, Winnipeg, MB, Canada, and
the M.A.Sc. degree in 2020 from Simon Fraser Uni-
versity, Burnaby, BC, Canada, where he focused on
machine learning and electrical engineering. From
2019 to 2020, he was a Research Assistant with
the Computational Sustainability Lab, Simon Fraser
University. His research interests include the ap-
plication of machine learning techniques to energy

analytics, including non-intrusive load monitoring and demand prediction at
various scales. He was the recipient of the NSERC CGS-M, the Graduate
Dean Entrance Scholarship (Simon Fraser University), and the Allen Medal
in Physics (University of Manitoba).

Stephen Makonin (M’08-SM’13) is an Adjunct
Professor in Engineering Science and the Princi-
pal Investigator of the Computational Sustainability
Lab at Simon Fraser University (SFU). He received
his PhD in Computing Science at Simon Fraser
University in 2014 in the area of computational
sustainability. He has been a software engineer for
over 24 years working for various local/international
industry clients. Stephen is a registered Professional
Engineering (PEng) with Engineers and Geoscien-
tists BC and a Senior Member of the IEEE. His

research interests include computational sustainability and the understanding
of socioeconomic issues that pertain to technological advancement. Stephen
is an expert in data engineering, software engineering, and a world-renowned
researcher in non-intrusive load monitoring (NILM) and disaggregation.
Stephen is currently the Vice-Chair of the IEEE Signal Processing Society
Vancouver Chapter and sits on the IEEE DataPort Advisory Committee. He
currently serves as the Editor in Chief of the IEEE DataPort Metadata Review
Board, and as an Editorial Board Member of Nature’s Scientific Data journal.

Ivan V. Bajić (S’99–M’04–SM’11) received the
Ph.D. degree in electrical engineering from Rensse-
laer Polytechnic Institute, Troy, NY, USA, in 2003.
He is a Professor of Engineering Science and co-
director of the Multimedia Lab at Simon Fraser
University, Burnaby, BC, Canada. His research inter-
ests include signal processing and machine learning
with applications to multimedia signal processing,
compression, communications, and collaborative in-
telligence. He is currently the Vice Chair of the IEEE
Multimedia Signal Processing Technical Committee

and an elected member of the IEEE Multimedia Systems and Applications
Technical Committee. He has served on the organizing and/or program
committees of the main conferences in the field. He was an Associate Editor
of IEEE Transactions on Multimedia and IEEE Signal Processing Magazine,
and is currently a Senior Area Editor of IEEE Signal Processing Letters.

APPENDIX
QUANTITATIVE EVALUATION OF INDIVIDUAL APPLIANCES

Table IV shows the results for each metric as evaluated on
generated samples from a single class at a time. Note that
the SynD was not evaluated for the tumble dryer class as it
does not contain any traces of tumble dryers. As we can see,
TraceGAN outperforms other generators in 12 of the 15 cases.
The only metric in which TraceGAN is sometimes inferior
to the other methods is SWDLap, though it is still performs
well in most appliances in that metric. One possible reason for
this is that the SWD metric, by its definition, can be biased
towards copies of the original data, so long as they somewhat
differ from each other (in our case, the windows from each
generator are randomly shifted in time). In general, however, it
remains clear that TraceGAN is the most consistently reliable
and diverse method of all three generators.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3078695

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


