
Real-Time Embedded Low-Frequency Load Disaggregation

by

Stephen Makonin

BTech, British Columbia Institute of Technology, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

© Stephen Makonin 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Stephen Makonin

Degree: Doctor of Philosophy (Computer Science)

Title of Thesis: Real-Time Embedded Low-Frequency Load Disaggregation

Examining Committee: Dr. Jim Delgrande
Chair

Dr. Fred Popowich,
Professor, Computing Science, Senior Supervisor

Dr. Verónica Dahl,
Professor, Computing Science, Supervisor

Dr. Lyn Bartram,
Associate Professor, Interactive Arts + Technology, Supervisor

Dr. Ivan V. Bajić,
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ABSTRACT

Understanding how the electrical appliances and devices in a house consume power is

an important factor that can allow occupants to make intelligent and informed decisions

about conserving energy. This is often not an easy task. These electrical loads can turn

ON and OFF either by the actions of occupants, or by automatic sensing and actuation

(e.g. thermostat). Even if we could keep track of when loads turned ON and OFF, it is

difficult to understand how much a load consumes at any given operational state because

of the lack of proper measurement reporting within equipment manuals. Occupants could

buy sensors that would help, but this comes at a high financial cost. Power utility compa-

nies around the world are now replacing old electro-mechanical meters with digital meters

(smart meters) that have enhanced communication capabilities. These smart meters are es-

sentially a free sensor that offer an opportunity to use computation to infer what loads are

currently running in a house and to estimate how much each load is consuming, a process

often referred to as load disaggregation.

This thesis presents a new load disaggregation algorithm (i.e. a disaggregator). This

new disaggregator uses a super-state hidden Markov model and a new Viterbi algorithm

variant which preserves dependencies between loads and can disaggregate multi-state

loads, all while performing computationally efficient exact inference. Our sparse Viterbi

algorithm can efficiently compute sparse matrices with a large number of super-states.

Our disaggregator is the first of its kind to run in real-time on an inexpensive embedded

processor using low sampling rates (e.g. per minute). Other contributions of the research

include an analysis of electrical measurements, the release of a publicly available dataset,

and a method for comprehensive accuracy testing and reporting.

Keywords: nonintrusive load monitoring; NILM; energy modelling; hidden Markov model;

Viterbi algorithm; sustainability
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To all the continuous power signals that I continuously discretized and quantized.
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“Dans les champs de l’observation le hasard ne favorise que les esprits préparés.”

“In the field of observation, chance favours only the prepared mind.”

— Louis Pasteur, LECTURE, UNIVERSITY OF LILLE, 1854
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1
INTRODUCTION

Load disaggregation is a topic studied by computational sustainability researchers who

investigate algorithms that try to discern what electrical loads (i.e. appliances) are running

within a physical area where power is supplied from the main power meter. Such physical

areas can include communities, industrial sites, office towers / buildings, homes, and even

within an appliance. When focusing on homes, this area of research is often referred to as

nonintrusive (appliance) load monitoring (NILM or NIALM). By knowing what loads are

running, when they are running, and how much power they are consuming, we can begin

to make informed choices that can lead to a reduction in power consumption.

Load disaggregation research first began with a call in 1989 from the Electric Power

Research Institute (EPRI) [15]. Shortly after, Sultanem [16] and then Hart [17] published

their first research results. Most disaggregators (or load disaggregation algorithms) have

a number of generalizable steps (see Figure 1.1). One of the first steps is to use priors (e.g.

datasets, which we will discuss in Chapter 4) and a pre-tuner and model builder to build

models of appliance power consumption. A meter is needed to measure the amount of

aggregate power a house is currently consuming. Using the readings from a whole-house

power meter (see Chapter 2) and appliance models, together with an inference algorithm, we

can infer what state each appliance is in and use an estimator to estimate the amount of

power it is consuming (see Chapter 3). Some disaggregators use an active tuner for tuning

the appliance models continuously. The pre-tuner and active tuner are optional due to the

choice of modelling type used (see Chapter 3 for more details).

1
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Figure 1.1: A block diagram of a typical disaggregator. In an initial phase, priors are used to build models
that can be pre-tuned. Once models are built, they along with aggregate meter data are used to infer what
loads are on and how much they are consuming. These models can be actively tuned to improved accuracy.

In this thesis we focus on contributions to load disaggregation in the home and argue

while there is a focus on the home, the algorithms presented can be scaled up to a commu-

nity level and down to the appliance level. We also discuss the importance of real-world

solutions which need to be reflected in disaggregator design. We believe that load disag-

gregation should be a part of the smart meter and should only exist on the home area network
side of the meter to alleviate any privacy concerns (see Figure 1.2). However, the disaggre-

gator can run as separate equipment in the home. In either case no data would ever be

sent to the power utility. We also believe the disaggregation data should be owned by the

occupants and must be made available to the occupants so that they can make informed

energy conservation decisions regardless of their socio-economic situation [2]. This smarter
smart meter would be able to inform the occupants of a home as to what appliances are

running and how much power they are consuming without sending any data to the power

utility company. As such, we briefly discuss how load disaggregation is an essential part

of the smart home, as well as any eco-feedback devices within the home.

In order for load disaggregation to be practical, it will need to run in real-time on com-

modity embedded hardware that is inexpensive and consumes little power. Inexpensive,

to overcome the adoption barrier of cost and low power consumption, so that occupants

spend as little money as possible to reduce the amount of their power utility bill. Such goals

can create motivation for the dumb smart meter to become a smarter smart meter. Cost is a

key consideration when utility companies need to roll-out millions of smart meters. Load

disaggregation plays a key part in power utility company initiatives such as time-of-day

usage tariffs and demand response. These initiatives are designed to offset the demand in
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Figure 1.2: Proposed physical system components: (left) the “smarter” smart meter, and (right) an informa-
tive display. Note that the Embedded Load Disaggregation integrated circuit (IC) module is placed on the
home area network (HAN) side of the meter and only communicates with devices on the HAN side in order
to maintain occupant privacy. At anytime no data would ever be sent to the power utility.

power consumption at critical times to avoid power grid outages.

1.1 Motivation

Residential homes consume about 34% of the total power consumption in the USA and

their consumption is projected to increase to 39% by 2030 [18]. Homeowners and occupants

can play a part in the conservation solution. But, before this can happen, homeowners need

to be informed about how they consume. Many studies [19–23] have shown that informed

homeowners and occupants can and do reduce consumption (between 5% to 15%) when

they are aware of their consumption behaviour. A recent study [24] showed that 80% of

participants want to have access to disaggregation data (i.e. knowing how their appliances

consume energy) and believed that every one should have access to this information. The

study also shows that when load disaggregation information is made available to occu-

pants, those occupants can reduce their energy consumption by an average of 14%. In fact,

more research is showing that in order for occupants to reduce (on average) their energy

consumption by more the 9.2%, real-time appliance specific consumption information is

needed [18, 25].
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Providing devices, such as plug-level meters, in a home can greatly improve our ability

to conserve energy in an intelligent way, but such devices can be expensive. Occupants

on low or fixed incomes will need to conserve more, as prices rise, to stay within their

budgetary means. Many would find the cost of such equipment unaffordable. We recently

wrote about the need for everyone to participate in energy conservation regardless of their

socio-economic situation [2], where we proposed a Consumer Bill of Rights for Energy Con-
servation (Figure 1.3).

ARTICLE I: ACCESS 
The consumer has the right to know 
the power demands and signatures of  
each appliance, including the average, 
peak, and multiple-state power con-
sumption. Access to this information 
must be made available via an informa-
tive display that would communicate 
directly to the smart meter, and not 
rely on the consumer having a comput-
er or access to the Internet. 
!

ARTICLE II: PRIVACY 
The consumer’s detailed appliance use 
information, or disaggregated data, be-
longs solely to the consumer.  The con-
sumer and producer jointly own aggre-
gate power data. Data shall not be dis-
tributed to third parties except in 
anonymized and aggregated form, and 
with the consumer’s express written 
consent. 
!

ARTICLE III: SECURITY 
The consumer has the right to expect 
that data is sent from the smart meter 
to the power utility and to devices in 
the home over a secure communication 
network. 

!
ARTICLE IV: EQUALITY 

The consumer has the right, no matter 
the socio-economic situation, to equal 
opportunity to participate in energy 
conservation activities. 
!

ARTICLE V: COMFORT 
The consumer has the right to use en-
ergy to support basic comforts without 
shame or penalization. 
!

ARTICLE VI: RE-ENTRY 
The consumer has the right to re-enter 
into programs that promote general 
energy conservation retrofitting. Pro-
grams must allow for staged comple-
tions in recognition of  change of  resi-
dence and budget constraints. 
!
ARTICLE VII: MAXIMIZATION 

The enumeration of  the foregoing 
rights shall not be construed to deny or 
disparage others retained by the con-
sumer.

Consumer Bill of Rights for Energy Conservation

Figure 1.3: The Consumer Bill of Rights for Energy Conservation.
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Access to rich information about appliance consumption, no matter the socio-economic

situation of a household, is paramount for everyone to participate in energy conservation

activities. This is because the dynamic nature of homes and occupants. We cannot begin to

predict nor understand what type of energy conservation strategies different homes would

use. We need only provide rich information about appliances and let the occupants make

their own decisions based on their needs, opportunities, and comfort. So now we know

having appliance-level consumption information is needed to have occupants achieve their

maximum energy conservation potential. We need to understand key concepts that can

see the success of load disaggregation as the pivotal driver for being the appliance-level

information provider. From our title we take three key concepts that have motivated our

research: real-time, embedded, and low-frequency. Additionally, other key concepts we

need to review include: accuracy, the home area network, data privacy, informative dis-

play, data noise, deferrable actions and a load of loads.

Real-Time Real-time is the ability to disaggregate the power signal faster than the fre-

quency it is sampled at. This also includes the concept that disaggregated data

would be reported to the occupants in real-time so that the information being shown

matches the activity of the house. Any lag in time between power measurement and

informative feedback would cause problems for occupants in identifying what con-

sumption events just occurred. Informing occupants of what appliances are ON and

how much they are consuming after the fact causes a discontinuity in the understand-

ing of how their actions can be linked with energy consumption. We will perform an

experiment with this idea in Section 5.7.

Embedded Embedded is the ability to have the disaggregator run on low power, resource

constrained, inexpensive commodity processors. This is important because any so-

lution that requires a large amount of computation would in and of itself consume

a large amount of energy while running. It may in fact cost more to run the disag-

gregator than the savings realized by its use to conserve energy. An embedded dis-

aggregator is also important because we have argued that the disaggregator should

exist in the smart meter so all occupants can receive information about how loads

or appliances in their home consume energy. This information could then be used

to make informed decisions about how best to conserve energy based on choice and

preferences of the occupants. We will discuss this in more detail in Section 2.5 with a
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supporting experiment in Section 5.7.

Low-Frequency Low-frequency is the ability to disaggregate at a sampling rate faster than

the frequency of 1Hz or less. This is important because high-frequency metering (e.g.

15kHz) requires high performance sensors and a high data network bandwidth to

send that information to informative displays and other devices in the home. High

performance measurement sensors are expensive, which would be an adoption bar-

rier by: (a) the utility having a disaggregator in the smart meter, or (b) having occu-

pants buy an off-the-shelf disaggregator product. A high data network bandwidth is

also an issue because of equipment cost and the potential network saturation due to

a high volume of data being sent over the data network. We will discuss this in more

detail in Chapter 2.

Accuracy The success of any disaggregator can be determined by a measure of its accu-

racy. However, by its very nature, a disaggregator must be measured for its accuracy

performing different functions. The accuracy of a meter is often predetermined by

the product we have purchased. The action of having the disaggregator classify at

what state each load is in, needs to be measured separately from its function of esti-

mating the rate of consumption. This is due to the fact classification and estimation

are often two separate and distinct functions that the disaggregator executes. Dif-

ferent accuracy measurement techniques need to be used for each function. We will

discuss this in more detail in Chapter 4.

Home Area Network (HAN) The HAN allows the smart meter and other devices to be

able to communicate with each other in the confines of the home. Devices that exist

outside the home cannot and should not be communicated with. Current wireless

HAN standards, such as ZigBee 1, are considered low bit rate, meaning high volumes

of data easily cause network saturation. Any disaggregation information being sent

over such a network would need to be sent at a low-frequency rate (especially when

the disaggregator is separate from the meter). We only introduce this concept as

background information here.

Data Privacy Data Privacy is the assurance that disaggregation data is owned by the oc-

cupants of the home and is only communicated and stored within the devices in the

1Our research is not tied to ZigBee, is it communication protocol agnostic.
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HAN. As depicted in Figure 1.2, the disaggregator should exist only on the HAN

side of the smart meter. The power utility and equipment outside the HAN should

not have access to disaggregation data. Again, we only introduce this concept as

background information here.

Informative Display An informative display is a display unit with the capability to visual-

ize disaggregated load data in various graphical forms. This display does not require

the homeowner to have a computer or access to the Internet – this is important es-

pecially in the case of low-income households [2]. At the very least, the informative

display must have the capacity to collect the smart meter data directly over the HAN

to avoid data privacy issues.

Data Noise Data noise can be understood as unexpected or unaccounted for anomalies

that can appear in the stream of data that an algorithm analyzes. This can take a

number of forms when looking at disaggregation. There can be missing readings

that leave gaps in a time series of data. There can be data streams that have times-

tamps that are out of sync. There can be corrupted data where data measurements

within the reading are missing or measured wrongly due to sensor miscalculation or

malfunction. Aside from miscalculation or malfunction, data can contain Gaussian

noise due to small fluctuations in sensor/ADC (analog-to-digital converter) precision

and/or the consumption of power by a load. Specifically for disaggregation, noise

can be unmetered loads that create large unexpected patterns of energy consump-

tion. Unless otherwise stated when we discuss noise (which we do throughout this

thesis) we refer to the noise from unmetered loads.

Deferrable Actions There are two broad categories of actions that occupants can perform:

deferrable and non-deferrable actions. Deferrable actions are those types of actions

that occupants can postpone, actions that occupants do not necessarily need to per-

form now. For example, having the dishwasher run during periods of the day when

the charge per kWh is less, resulting in a reduced power bill. Such loads are large

consumers of power and more easily identifiable; for example, washing and drying

clothes, washing the dishes with a dishwasher, baking with a wall oven, heating or

cooling a house. We say they can be deferrable most of the time because there may

be situations where such appliances need to be used to attain a certain level of occu-

pancy comfort. For instance, on a very cold day it may be necessary for occupants to
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turn up the heat to prevent the house from getting too cold. Non-deferrable actions

are actions that cannot be delayed and could cause inconvenience and discomfort to

occupants, and in some situation be unsafe. For instance, the occupant must turn the

light ON to go downstairs if it is dark even though the price per kWh is high during

that time of the day. As we have discussed in previous work [10], we believe that load

disaggregation only be highly accurate to identify loads that have deferrable actions.

Being that these loads are high consumers of power, this means that high accuracy is

achievable as we will show in Chapter 5.

A Load of Loads Our final concept is a load of loads. The majority of modern loads/appliances

are complex and multi-state consisting of sub-loads not just a simple ON/OFF be-

haviour2. Our philosophy is that a load has loads at any level–be it an appliance,

room, home, or neighbourhood. So any disaggregator should be able to disaggregate

complex and multi-state loads very accurately. Further, to support disaggregation at

various levels, a disaggregator must be agnostic of low-frequency rates and measure-

ment types (e.g. current, power, etc.). We will discuss this in more detail in Chapter 3.

1.2 Example Scenario

Consider an example scenario [8], describing the activity of an occupant in a studio suite

over the course of one-hour (5:00pm – 6:00pm). Our homeowner lives in Vancouver (BC,

Canada) in a small 38m2 studio suite. The local power utility charges 10¢/kWh. It still

gets cold outside so the heating occasionally turns on. Heating is provided by two electric

baseboard heaters. In December, sunset is around 5:10pm, and it gets dark quickly. Be-

fore starting to cook dinner, she makes a cup of tea using her electric kettle. On TV, local

news starts at 5:30pm for a half-hour and she usually eats dinner while watching. Our

homeowner uses the microwave to prepare a hot meal. Towards the end of the local news,

during a commercial break, she uses the electric kettle to boil more water.

Using the appliance information in Table 1.1, can we easily determine what loads turned

ON/OFF and when, by examining Figure 1.4? This might be a task akin to balancing a

cheque book, if done in a short period of time after the events have occurred. However, as

2Hart [17] identified four basic types: simple ON/OFF, finite-state, constantly on, and continuously
variable.
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Table 1.1: Studio Suite Appliances

Appliance Power Description

Lights 480 W 8 Incandescent 60W Bulbs
Ent/TV 250 W Panasonic 50 Plasma TV
Heating 3.0 kW 2 Cadet 1500W Baseboard
Microwave 1.1 kW Panasonic Convection
Kettle 1.6 kW Cuisinart Cordless 1.7L

0.0 kW

1.5 kW

3.0 kW

4.5 kW

6.0 kW

5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM

Smart Meter Data

Figure 1.4: This line chart is typical of the type of aggregate data that the power utility provides the customer
via a web portal that the customer can login to using a web browser.

time passes such a task becomes increasingly more difficult to impossible, especially if the

above scenario is recalled from memory [26, 27]. How could we solve this problem?

1.3 Our Contributions

We can solve the problem raised in the previous section computationally by using load

disaggregation. We can create a disaggregator that uses low-frequency data and can run

on an embedded processor (low power, computation, and storage) in real-time with a high

degree of accuracy. A good disaggregator can fill in the blank area under the smart meter

data line in Figure 1.4. With rich information about loads determined by our disaggregator

a chart like in Figure 1.5 can then be created. Table 1.3 lists the load consumption details.

Our research, which is addressed in this thesis, can do this and presents six significant

contributions that further advance the field of disaggregation. These are listed below.

Contribution 1: We have examined the area of measurements, often overlooked by many

disaggregation researchers. We wanted to examine the best way to measure and

the best measurement to use for a disaggregator. One of the first investigations we
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Figure 1.5: This area line chart fills in the blank area under the aggregate line in Figure 1.4. This fill
represents how the aggregate total at any given time is a summation of all the disaggregated loads. An area
chart like this should be provided to the occupants on an informative display. This disaggregated data is stored
and communicated privately within the home. See Table 1.3 for the exact data used.

Table 1.2: Power Usage Details Used for the Example Scenario (1/min sampling), Part 1

Time Step Mains Lights Ent/TV Heating Microwave Kettle

5:00 PM 3000 0 0 3000 0 0
5:01 PM 3000 0 0 3000 0 0
5:02 PM 3000 0 0 3000 0 0
5:03 PM 3000 0 0 3000 0 0
5:04 PM 3000 0 0 3000 0 0
5:05 PM 3000 0 0 3000 0 0
5:06 PM 3480 480 0 3000 0 0
5:07 PM 3480 480 0 3000 0 0
5:08 PM 480 480 0 0 0 0
5:09 PM 480 480 0 0 0 0
5:10 PM 480 480 0 0 0 0
5:11 PM 480 480 0 0 0 0
5:12 PM 2080 480 0 0 0 1600
5:13 PM 2080 480 0 0 0 1600
5:14 PM 2080 480 0 0 0 1600
5:15 PM 2080 480 0 0 0 1600
5:16 PM 2080 480 0 0 0 1600
5:17 PM 480 480 0 0 0 0
5:18 PM 480 480 0 0 0 0
5:19 PM 480 480 0 0 0 0
5:20 PM 1580 480 0 0 1100 0
5:21 PM 1580 480 0 0 1100 0
5:22 PM 1580 480 0 0 1100 0
5:23 PM 1580 480 0 0 1100 0
5:24 PM 1580 480 0 0 1100 0
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Table 1.3: Power Usage Details Used for the Example Scenario (1/min sampling), Part 2

Time Step Mains Lights Ent/TV Heating Microwave Kettle

5:25 PM 1580 480 0 0 1100 0
5:26 PM 4580 480 0 3000 1100 0
5:27 PM 4830 480 250 3000 1100 0
5:28 PM 4830 480 250 3000 1100 0
5:29 PM 4830 480 250 3000 1100 0
5:30 PM 3730 480 250 3000 0 0
5:31 PM 3730 480 250 3000 0 0
5:32 PM 3730 480 250 3000 0 0
5:33 PM 3730 480 250 3000 0 0
5:34 PM 3730 480 250 3000 0 0
5:35 PM 3730 480 250 3000 0 0
5:36 PM 3730 480 250 3000 0 0
5:37 PM 730 480 250 0 0 0
5:38 PM 730 480 250 0 0 0
5:39 PM 730 480 250 0 0 0
5:40 PM 730 480 250 0 0 0
5:41 PM 730 480 250 0 0 0
5:42 PM 730 480 250 0 0 0
5:43 PM 730 480 250 0 0 0
5:44 PM 730 480 250 0 0 0
5:45 PM 730 480 250 0 0 0
5:46 PM 730 480 250 0 0 0
5:47 PM 730 480 250 0 0 0
5:48 PM 730 480 250 0 0 0
5:49 PM 730 480 250 0 0 0
5:50 PM 730 480 250 0 0 0
5:51 PM 730 480 250 0 0 0
5:52 PM 730 480 250 0 0 0
5:53 PM 2330 480 250 0 0 1600
5:54 PM 2330 480 250 0 0 1600
5:55 PM 5330 480 250 3000 0 1600
5:56 PM 5330 480 250 3000 0 1600
5:57 PM 5330 480 250 3000 0 1600
5:58 PM 3730 480 250 3000 0 0
5:59 PM 3730 480 250 3000 0 0
6:00 PM 3730 480 250 3000 0 0
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performed, as published in [3, 7], was to analyze what electrical measurement is best

for disaggregation, which we found to be current (I). This is mainly due to the fact

that current is more of a stable measurement than power. However, we did not want

our disaggregator to be limited to only using current (as we will mention below). In

Chapter 2 we examine everything about measurements and show through a number

of investigations supporting our claim.

Contribution 2: Another area we have examined and published about is the matrix spar-

sity found in hidden Markov models [5]. Others have in the past, as well. How-

ever, their disaggregators have implemented complex solutions to take advantage of

sparsity which is not alway efficient. We present an efficient way to take advantage

of sparsity in matrix storage and processing. We show how to do this by using a

super-state hidden Markov model, which was previously dismissed because of state

exponentiality. Our disaggregator presents new algorithms that are not just factorial

variants. Part of our disaggregator is a new Viterbi algorithm variant, called sparse
Viterbi algorithm that can efficiently process very large sparse matrices (>1,500,000

states [5]). Chapter 3 discusses in detail our disaggregator and provides investiga-

tions about efficiency claims.

Contribution 3: We have contributed back to the load disaggregation community by re-

leasing a publicly available dataset, called AMPds. The creation of datasets takes a

considerable amount of time, effort, and money, but is important for researchers who

want to test their disaggregators but may not have the resources available to create

their own dataset. Publicly available datasets are also important as they contribute to

reproducibility by having a common way to compare results between different dis-

aggregators. AMPds is now widely used in many different types of research around

the world [3] and stands on its own as a valuable contribution. See Chapter 4, Sec-

tion 4.4.1, for details about how AMPds was created.

Contribution 4: Yet another area we have examined is the practise of reporting how tests

were run and what are the best accuracy metrics to use. Many research papers that

are released pertaining to load disaggregation often leave out experimental testing

details and/or they overstate accuracy claims. We have published a guide of best

practises [14] where we introduced a comprehensive set of requirements needed to

describe the reporting of experimental results in a paper. One such measure, the
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percent-noisy measure (%-NM) defined in (4.9) reports how noisy the testing data

was. Another measure, finite-state f-score (FS f-score) is a new type of f-score accu-

racy measure that allows the reporting of non-binary classification accuracies (i.e. the

classification of multi-state loads). We detail this in Chapter 4.

Contribution 5: Our final and main contribution combines all previous contributions to

deliver our disaggregator (µDisagg) [5, 7]. To provide support to our claims, we test

µDisagg using multiple, publicly available, datasets (Chapter 5) and report our ac-

curacy results in detail (using our reporting method in Section 4.4.3). Our experi-

mentation will also show that our discrete model’s accuracy is equal to, if not better

than, the accuracy of continuous models while performing disaggregation faster. Our

specific sub claims for this contribution are as follows.

Contribution 5a: µDisagg is agnostic of low-frequency sampling rates and measure-

ment types, e.i. can disaggregate different measurements and different speeds.

Contribution 5b: µDisagg is highly accurate at load state classification and load con-

sumption estimation.

Contribution 5c: µDisagg is the first algorithm to run in real-time (e.g. Arm Cortex-

M3) using low-frequency data on inexpensive commodity embedded proces-

sors.

Contribution 5d: µDisagg can disaggregate appliances with complex multi-state power

signatures.

Contribution 5e: µDisagg is the first HMM solution that preserves dependencies be-

tween loads.

Contribution 5f: µDisagg can perform computationally efficient exact inference, while

other methods only use approximate methods.

In Chapter 6, we finish with some concluding remarks about and discuss the limitations of

our contributions, and we present possible future work.
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METERING

One of the first things we will look at is metering (Contribution 1). Not only is it funda-

mental to the beginning of the live disaggregation process, it is also fundamental for the

collection of priors and for the creation of models. In order to be able to disaggregate, the

disaggregator uses a power meter to measure the power on the line(s) that need monitor-

ing. Load disaggregation is considered single-point sensing. Single-point sensing, as the

name suggests, is to monitor power consumption for one point, usually the main power

line that enters a home – the point where the power utility places a meter on the side of a

house. There are a number of reasons why single-point sensing is attractive: (a) relatively

low cost, (b) less invasive installation, and (c) a generalized solution. As smart meters are

installed on homes, the single sensor needed for load disaggregation is present. There is

no need to install additional costly sub-meters/sensors. There are two main sampling cat-

egories that also need to be considered: high-frequency (>1Hz) [28,29], and low-frequency

(61Hz) sampling. The type of frequency chosen has an impact on what measurement types

we may want to use. This will be discussed in following sections.

We start off by giving a high-level review of measurement types (Section 2.1) and dis-

cuss multi-point sensing (Section 2.2) to complement the following sections. Disaggre-

gators can fall under two general categories when looking at metering: those that use

complex meter data (Section 2.3); and those that use basic data, like data recorded from

a smart meter (Section 2.4). We then present our approach to metering (Section 2.5) which

is supported by an investigation we performed that compared electrical current to real and

14
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apparent power (Section 2.5.1). We finish with a worked example (Section 2.6) that reflects

on the example scenario we presented in Section 1.2.

2.1 Measurement Basics

Often, as in our case, disaggregators use meters that measure the alternating current (AC)

signal entering the home. There are many textbooks that can provide an in depth discus-

sion of electronics [30] – we will attempt to provide a simplified introduction that suits our

purpose. For metering, the most basic measurements are voltage, current, apparent power,

and frequency. Voltage (4V, measured in volts or V) is the potential difference between

two points in a circuit, often referred to as tension or pressure. In North America, the po-

tential difference between each of the phase lines (L1 or L2) and the neutral line entering the

home is 120V. Current (I, measured in amperes or A) is the movement of electric charge

that (in an AC system) periodically reverses direction. Apparent power (S, measured in

volt-amperes or VA) is simply the product of voltage and current or V⇥I. Frequency (

f, measured in hertz or Hz) is the number of cycles per second that voltage cycles at. In

North America, electricity is supplied to customers at 60Hz or 60 cycles per second. The

time period between cycles can be calculated by 1

f .

Θ (phase angle)

Apparent Power (S)
measured in VA

S = V×I = I2×R

Real Power (P)
measured in W

P = S×cos(Θ)

Reactive Power (Q)
measured in VAR

Q = S×sin(Θ)

Figure 2.1: The Power Triangle.

There are intermediate measurements derived from basic measurements: real power,

power factor, reactive power, and energy. The power triangle (Figure 2.1) shows the re-

lation ship between the three different power measurements: apparent, real and reactive
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power. Real power (P, measured in watts or W), sometimes known as active power or av-

erage power, is the net transfer of energy in one direction. This is different than apparent

power (the gross transfer) because there is an additional amount of transfer needed to over-

come the opposing energy transfer from reactive components (e.g. inductive motors) in a

circuit. Power factor (PF) or cos(⇥) is the ratio between real power and apparent power

(or P
S ) and ⇥ is the angle between voltage and current. The power factor is unity (1) when

the voltage and current are in phase, and zero when the current leads or lags the voltage

by 90 �. Power factors are usually stated as leading or lagging to show the sign of the phase

angle of current with respect to voltage. Reactive power (Q, measured in volt-ampere-

reactive or VAR) is the rate at which power is stored and released back by components such

as capacitors and inductors. While power is an instantaneous rate measurement, energy
is the amount of power consumed over time and is often the measurement that appears

on your power utility bill as kilowatt-hour or kWh. For example, 1kWh is equivalent to

having a 1000W light bulb ON for 1 hour.

There are also advanced measurements which require signal analysis: harmonic dis-

tortion, electromagnetic interference, transients, and electrical characteristics. Harmonic
distortion is caused by frequency components that cause unsmooth characteristics in the

voltage’s sine wave (for background information see [31, 32]). Electromagnetic interfer-
ence (EMI) is caused by sources such as integrated circuits that introduce electrical currents

on a power line causing a noisy current signal. Transients commonly occur as either a brief

spike in power when a load is turned ON or a brief dip in power when a load is turned

OFF before the power signal returns to a steady-state. The amplitude and duration of these

spikes and dips are very different for each load and can be used to identify different loads,

providing that the meter can sample at a high rate. Electrical characteristics can be seen as

the metadata of measurements. For example, aggregate values (minimum, maximum, av-

erage) and eigenvalues. Eigenvalues (EIG) require an advanced understanding of power

systems. As such, only Liang et al. [29, 33] has ever discussed them.

2.2 Multi-Point Sensing

Multi-point sensing is the ability to monitor power consumption from more than one lo-

cation. This can be done by metering one or more breakers within a house power panel

(commonly known as branch circuit power metering or BCPM, e.g. DENT PowerScout
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18) or by having specific appliances plugged into their own plug-level meter (e.g. Insteon

iMeter Solo). In most cases, large loads will have their own circuit breaker (e.g. furnace,

clothes dryer, kitchen oven) and are ideal for BCPM. Smaller appliances that can share the

same circuit breaker (usually 15A circuits e.g. fridge, dishwasher, toaster, electronics) are

well suited to have plug-level meters.

We might ask ourselves the question: why go through the trouble of load disaggregation
when you could use plug-level meters or a BCPM? There is a consensus among researchers [34–

38] that the costs to purchase and install these additional meters make this option imprac-

tical for many occupants. Even with the use of multiple meters, not every load can have

its own meter. You still have a single-point sensing problem, albeit on a smaller scale.

For example, if you can only afford to monitor the circuit breakers, and the majority of

breakers have more than two appliances serviced by them, you still need to disaggregate

the load from the circuit breaker. Countering, one can argue that using partial multi-point

sensing can mitigate scalability problems by reducing the number of loads that need to be

disaggregated at one monitoring point, reducing the computational cost.

Given all this, multi-point sensing still plays a major role in disaggregation because it

is needed for priors to use in accuracy testing (see Section 4.1). Researchers use BCPMs

and plug-level meters to collect priors to build models specific to a home’s appliances and

loads. This is because, when comparing one home to another, each home has an almost

unique set of different appliances. Most appliances do not operate in simple ON and OFF

states. Appliances with different operational modes (multi-state) have complex power sig-

natures and are harder to identify from the aggregate power measurement of the smart

meter.

To move away from the collection of priors and to allow a disaggregator to be highly

accurate, appliance manufacturers would need to provide more accurate and detailed in-

formation about their appliances. Standards organizations, such as International Organi-

zation for Standardization (ISO) and the Canadian Standards Association (CSA) can play

a role in encouraging manufacturers to comply with certain policies that would provide

for better appliance power signatures to the public. In Canada, EnerGuide 1 labels provide

average power usage information about appliances. However, more detailed information

1see http://www.nrcan.gc.ca/energy/products/energuide/12523
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Power Facts

Sears Kenmore Dishwasher, Model No. 587.14403400

Valeur Électricité

Sears Kenmore Lave-vaisselle, Modèle 587.14403400

Amount
Teneur

Minute Duration
Minute Durée

Wash / Laver 6.4A

Rinse / Rinçage 1.2A

Light Cycle / Cycle Léger 6.4A

Normal Cycle / Cycle Normale 6.4A

Not in use / Non utilisé 0.0A

Heater / Réchauffeur 0.4A

——

——

4 min

Heavy Cycle / Cycle Lourd 6.4A

25 min

40 min

4 min

2 min

Energy consumption / Consommation énergétique

per year / par année
kWh280

Uses least energy /
Consomme le moins 
d'énergie

Uses most energy /
Consomme le plus 

d'énergie

Similar models compared / Modèles similaires comparés

This model  / Ce modèle

NOVEMBER 2005 2MANDATORY LABELLING REQUIREMENTS

Mandatory Labelling
Requirements

The requirements set out in this section of the guide are mandatory. Failure to comply with these requirements places 
dealers in violation of the Energy Efficiency Act and Energy Efficiency Regulations.

The appendices identify the EnerGuide labelling elements and specifications that must be followed when producing labels.
Note the two label designs:

• one for major electrical household appliances

• one for room air conditioners

The following information applies to producing and placing the EnerGuide labels for appliances and room air conditioners.

Physical characteristics of the EnerGuide label

Colour and size of paper

The label must be printed in black ink on white paper. The EnerGuide label must be 13.49 cm wide by 14.76 cm long 
(55/16 by 513/16 in.). The paper on which the label is printed may be larger, but the frame of the label cannot exceed 
the above size.

Sample appliance label (a full-sized label is
shown in Appendix A).

Sample room air conditioner label (a full-
sized label is shown in Appendix B).

Instructions-E_New.qxd  4/26/06  11:03 AM  Page 2

250 kWh 350 kWh

Figure 2.2: Example power facts label that would appear on an appliance which would provide the necessary
information for NILM to disaggregate this appliance from the whole-house power meter reading. This label
can be seen as an extension of the existing EnerGuide label.

such as the power usage of all the operational states and the expected or average dura-

tion of each operational state needs to be provided. This can be done in two ways: online

download and printed label. For an online download (the most ideal way), manufacturers

would upload appliance information to a government or standards organization database

where the consumers could download the power signature information for the disaggre-

gator to use. An alternate solution (for low-income households) would be the appliance

manual, or a sticker on the appliance, to contain a label that lists all this information (see

Figure 2.2 for an example [2]) and the user would be required to enter this information

into the load monitoring system. This label has a highly structured format and it would

be very easy to provide a smart phone app that could allow occupants to take a picture



CHAPTER 2. METERING 19

of the sticker, and have the image converted into load state parameters that could then be

uploaded to the occupant’s smart meter or disaggregation device.

2.3 Complex Measurements

The earliest research into disaggregation looked at identifying loads by the real power (P)

and reactive power (Q) draws. Hart [17] used real power (P) and reactive power (Q) known

as 4P4Q plot in addition to the appliance on/off duration at a sampling frequency of

1Hz. He found the dishwasher had “ramping periods” (synonym to continuously vari-

able) which would need a very complex finite-state machine to model its full behaviour.

He concluded that load disaggregation is not suitable for “small appliances, continuously

variable appliances, and appliances which are always on”. Norford et al. [28] used real

power and reactive power while looking at transient waves for commercial buildings sam-

pled in kHz-range (an exact number was not mentioned). They found that although they

used reactive power in their transient detector, “real power was sufficient to assess many

of the major aspects”. They noted transient analysis is more advantageous for detecting

equipment start-up and not equipment running at steady-state, but it comes at the cost

of more computational power. Laughman et al. [39] extended the 4P4Q plot by adding

harmonics as a third dimension. Adding harmonics allowed them to distinguish loads

that overlapped on 4P4Q plots. They discussed the fact this type of transient analysis

could lead to a form of equipment diagnostics, linking specific transients to specific equip-

ment electrical and mechanical faults. Fisera et al. [40] used only real power and reactive

power in conjunction with the existing building management system (BMS) sampling at

1Hz. They found that their method had exponential computational costs as more equip-

ment was added. Computational cost was also burdened “with the increasing period of

the control/status signals” provided by the BMS. They were, however, able to provide

load disaggregation results online in near real-time.

Some researchers have focused on different measurement statistical properties that a

load may exhibit when running. Berenguer et al. [41] used the electrical current startup

signatures to detect appliances. They found the short impulse, when the appliance was

turned on, provided a unique signature for each different appliance. They observed their

system “produce[d] sensible information on the global activity of [a] person”. Chang
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et al. [42] used voltage and current measurements sampled at 15 kHz. Where other re-

searchers found transient analysis was sufficient for load disaggregation, they found it

necessary to “combine transient and steady-state signatures ... to improve recognition ac-

curacy and computational speed”. Lee et al. [43] used the different electrical characteristics

of real power (e.g. raw, average, peak, etc.) measured from each appliance at a sampling

rate of 0.2Hz. They developed “activity-appliance models”. They believed these models

“could help detect unattended appliances”. Tsai et al. [36] used current electrical charac-

teristic measurements (e.g. intensity, peak, average, etc.) on five appliances (fan, florescent

light, radio, and microwave oven) at different sampling rates from 1Hz to 1MHz. They

captured current waveforms as the appliances were being turned on at different voltage

phase angles. This was done to create unique and repeatable profiles. They needed to re-

duce the sampling rate from every 1 microsecond to every 500 microseconds to “reduce the

computational burden and memory requirements of the system”. Figueiredo et al. [44, 45]

used voltage, current, and power factor measurements at 1kHz. They concluded that sim-

ple load disaggregation methods had high accuracy results when performing steady-state

signature matching. However, they needed to acquire more signature IDs to increase the

accuracy and robustness.

Other researchers such as Gupta et al. [46] used EMI spectrum analysis (sampling at

100kHz) to detect appliances, and found a number of interesting results. Appliances that

are the same make and model had very similar signatures and that the signature is mostly

independent of the home. But, the placement of the EMI sensor within a home affects

the signal which is a “function of the line inductance” between the appliance and the sen-

sor. This means that two identical appliances have different EMI signatures depending on

where they were plugged in on the power line. They were able to detect near simultaneous

appliance events at 102 milliseconds apart. Their solution required specialized equipment

that needed to be trained on every appliance in the home.

Metering these types of measurements often requires sampling at high-frequencies

which requires specialized measurement equipment that in many cases researchers either

have custom built (e.g. [41, 47–49]) or purchased [29]. The availability and cost of this type

of equipment means that it is not feasible for use in the home.
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2.4 Basic Measurements

With the advent of smart meters being installed on homes around the world, and the abil-

ity for smart meters to communicate consumption data, basic measurements have become

a focal point for many researchers – in particular apparent power (S). The smart meter can

be seen as a free sensor that should be used by any residential disaggregator. Unless other-

wise noted, these researchers use a low-frequency sampling rate, which is what would be

provided by a smart meter.

Early research was inspired by using a residential power meter to disaggregate, but

these researchers deviated slightly in the development of their disaggregator. Baranski et

al. [48, 50, 51] found the use of an optical sensor was an inexpensive option to read power

measurements off a home’s existing power meter. They used genetic algorithms that were

able to create a state-machine of appliances that had high usage. The genetic algorithm

could actively learn and discover new appliances that were either simple on/off or multi-

state (with 65 states) without prior knowledge. Berges et al. [34] were also influenced by

smart meters, but decided to use a high-frequency sampling rate (10kHz). They only pre-

sented results for one appliance (the refrigerator), no other appliances were monitored or

tested. They found when the refrigerator went into defrost cycle there was significant error

in detection. They identified the need for better signature capture and machine learning

algorithms.

Recent research has actually used residential meter data with appropriate measurement

types and sampling frequency. Kim et al. [35] were motivated to use power measurements

because of the advent of smart meters. They found it difficult to disaggregate steady-states

and needed to rely on appliance state changes. The accuracy of identifying appliances

decreased as appliances were added, from one appliance (100%) to eight appliances (be-

tween 73–65%). They concluded that additional features (none mentioned) would need to

be added to maintain higher accuracy as more appliances were added. Kolter et al. [52]

were again influenced by smart meters. To be able to disaggregate with high accuracy

they used complex unsupervised machine learning algorithms. Their disaggregator did

have issues with distinguishing similar signatures. Zeifman [38] identified a number of

real world constraints for disaggregators, smart meters being one of them. He states that

his solution meets all the real world constraints identified except for various appliance types
where only simple on/off appliances could be detected. Even though he states that the
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real-time capabilities constraint was met, he only tested his system offline using MATLAB.

Twenty-six days of data took two minutes of processing; therefore (he concluded) “real-

time implementation is feasible”. Parson et al. [53] used power measurements sampled

once per minute. They were able to tune a general appliance model to a specific appliance

make and model across six different homes.

These researchers only considered apparent power because of the realization that smart
meters are being installed on homes. Having access to power readings at no cost is a con-

venience that cannot be overlooked, but this would mean there is now a limit to the mea-

surement types and sampling rate. A reduction in measurement types used reduces the

identification fidelity [39]. Low-frequency sampling should be considered when focused

on disaggregation for the home because smart meters have limited communication capabil-

ities. Smart meters can communicate readings, at most, every 1–5 seconds (0.2–1Hz) [54].

These rates are too infrequent for signature matching algorithms that run outside the smart

meter, but more advanced machine learning algorithms can aid in uniquely identifying

which appliances are being used.

2.5 Our Approach

Relying on high frequency load disaggregation, we believe, is not a viable option. Firstly,

if load disaggregation [10] is to become a part of the smart meter, as we believe it should,

then an embedded processor that can perform disaggregation must be inexpensive and the

disaggregator must be efficient in terms of computation and storage usage. When utility

companies roll out millions of smart meters, cost becomes a large consideration.

Secondly, data transmission rate as >1Hz will most likely cause network saturation

due to the low bit rate of HANs like ZigBee2. Low frequency disaggregation can be just

as accurate, if not more, than high frequency disaggregation even with the loss of unique

power-on surge spikes – often missed when sampling at low frequencies. Our contribution

(Contribution 5) is a low frequency disaggregator that is more accurate than current state

of the art high frequency disaggregators. In Section 5.6 we will compare the accuracy of

our disaggregator to the accuracy of other disaggregators.

Our approach is to create a model of the house and a disaggregator that is measurement

2From personal conversations/correspondence with BCHydro, the local power utility. Our research is not
tied to ZigBee, is it communication protocol agnostic.
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agnostic. Our goal is to have the ability to disaggregate with either current (I) or apparent
power (S). Disaggregation using current is ideal for off-grid homes and buildings that use

DC power; while apparent power may be best for home powered by AC. However, in Sec-

tion 2.5.1 we discuss what is the best measurement to use – there is a clear advantage to

using current over power for disaggregation. We believe that load disaggregation should

be a part of the smart meter, where occupants can use this information to make more intel-

ligent decisions about conserving energy.

We quickly found that meter manufacturers have closed, proprietary hardware that did

not allow us to embed a disaggregator right into the meter. We envisioned two scenarios:

(a) where occupants may have an existing power meter that could communicate over a se-

rial connection; or (b) did not have a meter, and would want to purchase or build one. This

is where the Arduino Power Meter Reader (see Section 2.5.3) and Precision Ammeter (see

Section 2.5.4) projects fit in. These projects have hardware and software that is open source.

There are a number of open source hardware and software development platforms avail-

able to build prototype systems. We chose the Arduino 3 platform because of its popularity,

the support ecosystem, and commitment to open source.

There exists other open source development platforms which we evaluated for use.

The Maple 4 from LeafLab is an ARM Cortex-M3 based board with a smaller footprint.

However, since its release there has only been a small development community and in 2014

is has ceased to be actively developed on. The Teensy 3.0 5 from PRJC was a Kickstarted

funded project (ARM Cortex-M3 based, as well). It is more popular than the Maple and has

a very small foot print. However, the lack of programming library documentation makes

this platform difficult to work with. Additionally, the small footprint size does not allow for

good separation between analog ground and digital ground which caused ADC readings

to contain an excessive amount of jitter. These issues we experience in the development a

multi-circuit ammeter array not discussed in this thesis [7]. At this point in our research the

TI LaunchPad 6 hardware platform had just been released. We were not able to consider

using this platform because the processors were computationally under powered, the lack

of platform documentation, and the absence for a development community.

3see http://www.arduino.cc
4see http:// leaflabs.com/devices/maple/
5see https://www.pjrc.com/store/teensy3.html
6see http://www.ti.com/ww/en/launchpad/launchpad.html
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2.5.1 Measurement Reading Flux

With the detailed and long term information available in our AMPds dataset [3], we ran an

experiment to compare the reading of current (I), apparent power (S), and real power (P) to

see which measurement fluctuates more (Contribution 1). We introduced I, S, and P and

their relationship to each other in Section 2.1. We first reported on similar investigations in

the past [3, 7]. Here are the findings of our investigation into measurement fluctuations.

Table 2.1: Comparing Fluctuations in Distinct Readings

ID Load dA A VA W Flux (VA/dA) Flux (VA/A)

B1E North Bedroom 14 3 95 86 6.8⇥ 32⇥
B2E Master & South Bedroom 19 3 186 177 9.8⇥ 62⇥
BME Basement Plugs & Lights 52 9 399 381 7.7⇥ 44⇥
CDE Clothes Dryer 88 21 639 632 7.3⇥ 30⇥
CWE Clothes Washer 123 13 982 745 8.0⇥ 76⇥
DNE Dining Room Plugs 9 1 99 55 11.0⇥ 99⇥
DWE Dishwasher 48 7 295 285 6.1⇥ 42⇥
EBE Electronics Workbench 17 3 113 109 6.6⇥ 38⇥
EQE Telco/Net Equipment 4 1 29 26 7.3⇥ 29⇥
FGE Kitchen Fridge 133 16 576 548 4.3⇥ 36⇥
FRE HVAC/Furnace 45 6 387 317 8.6⇥ 65⇥
GRE Detached Garage 72 13 136 126 1.9⇥ 10⇥
HPE Heat Pump 193 34 1338 1321 6.9⇥ 39⇥
HTE Instant Hot Water Unit 9 1 84 70 9.3⇥ 84⇥
OFE Home Office 73 9 434 429 5.9⇥ 48⇥
OUE Outside Plug 2 2 7 6 3.5⇥ 4⇥
TVE Entertainment/TV 43 6 433 416 10.1⇥ 72⇥
UTE Utility Room Plug 7 1 43 24 6.1⇥ 43⇥
WOE Wall Oven 97 18 645 630 6.6⇥ 36⇥

Table 2.1 shows the result of an analysis we performed on 524,544 data points (per min

readings) over 1 year (in AMPds). We found both apparent and real power readings had a

high degree of fluctuation (as high as 99⇥ for A or 11⇥ for dA , see Table 2.1) compared to

current. This is due, in part, to the meter using two sensor readings (current and voltage)

that can both fluctuate independently to measure real power. With meters that measure
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multiple circuits or breakers, current is measured on the same wire as the load while volt-

age is measured in one spot on the breaker power panel. We experienced a noticeable

voltage drop when measuring voltage at the top of the breaker power panel versus the

bottom. This means if the meter is measuring the voltage level at a single spot, the further

away the current transformer (CT), the less accurate the voltage reading. This leads to a

less accurate power reading when calculating the power associated to that CT. In addition,

the resistiveness of the load changes due to other factors such as wire gauge and material

used. In other words, there is again a voltage drop from the breaker as compared to the

plug outlet. It is worth noting that current is not affected by these problems.

We concluded that using current would result in: (a) being better able to determine load

states from historical data algorithmically, and (b) a higher classification accuracy score for

the disaggregator. Figure 2.3 shows the results from Table 2.1 for the dishwasher. By exam-

ining the number of distinct current reads (Figure 2.3(b)) we were able to algorithmically

determine the dishwasher had 4 finite-states. Figure 2.3(b) will form the basis for probability
mass functions (PMF) which our disaggregator will use.

We noticed the outside plug (OUE) had very few fluctuations when compared with I,

S, and P. This was due to the fact the outside plug only had one event where there was a

2.6A load ON for 2 minutes (at timestamp 1338438360). Even though there was no other

instance of a load being ON on OUE, there were times when S was measured at 4 or 5VA

even though were was a measurement of 0.0A. We are not sure why this might be the case,

only that there may be erroneous current sensor readings – a value too low to be reported

as anything other than 0.0A.

2.5.2 Switch Continuity Principle

Hart’s switch continuity principle [17] has been used by many NILM researchers. For ex-

ample, Parson et al. [53] used this principal to actively tune generic appliance models. In

Hart’s tests, multiple loads switching states accounted for 4% of the reading collected at a

sampling rate of 2–3 seconds. Since 1992, more homes have more energy efficient, multi-

state appliances. We wanted to test this principle to see if it holds true on low-frequency

sampling. We again examined the data in AMPds [3] in addition to the data in the REDD

dataset [55]. Because AMPds contains various measurements, we were able to examine

multiple measurements.
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Figure 2.3: An examination of the dishwasher. Comparing current (b) vs power (c) there is 6⇥ (using dA) as
many different measurements for power as there are for current. This is due to fluctuations in voltage. Each
spike in (b) can be seen as a distinct load/appliance state (4 states in the case of our dishwasher).
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Figure 2.4: Stacked bar charts of simultaneous load state changes: (left) results for Table 2.2, and (right)
results without no-events data (i.e. when loads stayed in the same state). We removed no-events data because
learning opportunities only occur during state changes. Comparing Tests 1, 2, and 3 (A, VA, and W from the
AMPds dataset) we can observe that current measurements, again, are the better choice. The remaining tests
show how the switch continuity principle cannot be relied upon using power readings in the REDD dataset.

Table 2.2: A Summary of Simultaneous Load State Changes
Test Dataset Unit Loads States Readings No Events 1 Event Multiple

1 AMPds dA 19 42 524.5k 75.2% 21.3% 3.5%
2 AMPds VA 19 342 524.5k 9.2% 25.9% 64.9%
3 AMPds W 19 316 524.5k 5.1% 19.2% 75.7%
4 REDD House 1 VA 10 152 406.7k 81.7% 15.2% 3.1%
5 REDD House 2 VA 8 67 316.8k 72.8% 24.3% 2.9%
6 REDD House 3 VA 12 307 376.1k 37.3% 39.8% 22.9%
7 REDD House 4 VA 11 211 428.1k 29.4% 40.7% 29.9%
8 REDD House 5 VA 14 371 77.5k 39.4% 39.5% 21.2%
9 REDD House 6 VA 11 174 192.2k 52.4% 32.3% 15.3%

Table 2.2 and Figure 2.4(left) show the results of our tests. Tests 1–3 used AMPds with

data sampled at 1 minute intervals, and tests 4–9 used REDD with data sampled at 3 second

intervals. The States column is a summation of all the states of every load. Load states

were determined using the algorithm in Sections 3.5.1 and 3.5.2. We got mixed results.

Tests on the AMPds dataset show that using deci-Amperes with a lower number of load

states echoes the results reported by Hart. Using apparent and real power (where readings

fluctuate more) causes a larger number of load states and a larger number of simultaneous

state switches. Tests on the REDD dataset are mixed with house 1 and 2 performing well,

while the other houses did not. These results provide additional support for our decision
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to use current rather than power for disaggregation.

Figure 2.4(right) shows the results if we ignore no-events data. We wanted to ignore data

where no events occurred in our analysis because learning can only happen at the point

where an event has occurred (i.e. load states change) as Parson et al. [53] has demonstrated

with tuning generic appliance models using a difference factorial HMM with the switching

continuity assumption. Learning opportunities only can be performed when only one load

switches state and these results highlight the fact we cannot (in some cases) rely on this

principle to actively learn new loads or actively tune existing known loads.

2.5.3 Arduino Power Meter Reader

This Arduino Power Meter Reader (APMR) was first published in [1] as an open source

project 7. In addition to Adruino, we chose Ubuntu Linux 8 and MySQL 9 for our database

server, and Electric Imp for the in-home display. Our choices were based on five principles:

(a) that the hardware and software platforms be open source and available to the public;

(b) that there are no additional licensing fees or on going costs associated with using the

platform for the hardware and software creator, vendor, or supplier; (c) that the cost of the

hardware be relatively inexpensive; (d) that the hardware be readily available for purchase;

and (e) software be easily accessible for download.

We looked at alternative operating system and database options. The above principles

prevented us considering Microsoft Windows and SQL Server. An open source alternative

to MySQL is PostgreSQL 10. PostgreSQL is a high-performance, reliable database system

which is in many respects seen as the open source alternative to Oracle. However from

our experience, PostgreSQL is difficult to setup and maintain. There are other Linux dis-

tributions we could have used but none are as actively worked on and widely used than

Ubuntu. Debian 11 then Fedora 12 would have our alternative choices if Ubuntu did not

meet our needs.

This section discusses our prototype design in detail. Figure 2.5 shows a block diagram

7located at https://github.com/smakonin/APMR
8see http://www.ubuntu.com
9see http://www.mysql.com

10see http://www.postgresql.org
11see https://www.debian.org
12see http:// fedoraproject.org
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of and describes the overall system. Figure 2.6 shows our prototype (APMR 2.0), power

meter, and other equipment used for our experiment. Our prototype communicated to a

Schneider Electric PowerLogic ION6200 power meter which was monitoring the load of a

computer workstation and LCD monitor. The APMR was set to read power in 1 minute

intervals. Over a 2 week period both the APMR and IHD operated without fault. Prior to

the current project, the APMR version 1.0 ran for 8 months reading 2 ION6200 meters once

per minute without fault. Our testing confirms the stability of the APMR and IHD choices

in an open source hardware platform, and our custom hardware and firmware.

Our prototype is based on the open source prototyping platform Arduino. The Arduino

Mega 2560 board was used with a third generation Arduino Ethernet Shield and two cus-

tom built shields; shields are simply add-on boards that are stacked up onto the main

board. Other Arduino main boards (e.g. Arduino Uno) could not be used due to having

a small amount for flash memory which out program image size exceeded. The two cus-

tom shields that were built were the Real-Time Clock (RTC) Shield and the RS-485 Shield.

The RTC Shield is used for exact timing purposes, recording readings every minute on the

zero-second. The RS-485 Shield allows for communication with a Modbus enabled power

meter (in our case the Schneider Electric PowerLogic ION6200). Both custom shields use

inexpensive electronics and further savings can be realized by combining the two shields

into one or by not using the RTC Shield. Figure 2.7 presents the schematics for both custom

shields used with AMPR.

The firmware of our prototype was designed with a number of features that make it

recoverable, scalable, and robust. These features are: the readings are recorded locally

using an SD card, the SD card log files can be downloaded using a web browser, the settings

are saved on EEPROM and changeable via a web browser, the readings are sent to a remote

website/database server, the ability to sense when the network is down, and then sends

all unsent readings when the network becomes available. Figure 2.8 provides a flowchart

of the firmware design of the APMR which incorporates these features.
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APMR

IHD

Database

Web Services

SD Card

Arduino Power
Meter Reader

Local
SD Card

Web Services

Ambient
Orb

Cloud
DatabaseAC Power Meter

(with MODBUS)

Figure 2.5: Overall APMR prototype system block diagram. The original project [1] has an ambient orb
which communicated wireless to APMR and the power utility. The ambient orb uses three colour LEDs
(green, yellow, and red) as ambient indicators for low current demand, average current demand, and high
current demand. Current demand was based on how much energy a home was currently consuming relative
to its past consumption. The LEDs would pulse ON-OFF during peak times when energy costs (per kWh)
were higher than normal.

Figure 2.6: The APMR prototype which can: communicate via RS-485/Modbus (top board) to a meter, keep
track of date and time using a real-time clock (second board from top), and communicate data over wired
TCP/IP (second board from bottom). It uses an Arduino Mega 2560 (bottom) as the main board.
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Figure 2.7: RTC and RS-485 Shield Schematics for the custom shields used by APMR.
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Figure 2.8: APMR firmware design flowchart.
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Figure 2.10: Precision Ammeter prototype. The ammeter shield is seeded into the Arduino Due. Although
only one split-core CT is connected (in this picture) via the screw terminals in the back, a maximum of 4 CTs
can be connected. The ammeter shield used the op-amp circuit in Figure 2.9.

2.5.4 Precision Ammeter

The Precision Ammeter [7] is an open source project 13. The Precision Ammeter would

serve two functions: a way to measure current, and a platform to run µDisagg. Figure 2.10

depicts and describes our prototype. We designed a custom ammeter shield to be used

with the Arduino Due. A shield is a board that plugs in to the top of the Arduino using a

number of pins. Each pin is assigned a function (such as analog in, digital I/O) that allows

the shield to communicate with the Arduino.

We studied projects such as Open Energy Monitor 14 that sample both voltage and cur-

rent waveforms using integral equations. These methods proved to be processing intensive

for the microprocessors and thus we decided to design circuitry that would accomplish the

same task, but without having the microprocessor extensively sample the waveforms (see

Figure 2.9 for the schematic and Figure 2.10 for the final product picture).

With our choice of having a current transformer to sample the currents of a specific

load, we obtained a voltage reading that would be directly fed into our analog to digital

13located at https://github.com/smakonin/Ammeter
14see http://openenergymonitor.org/emon/
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Figure 2.11: Op-Amp circuit linearity test results. Using a 20A CT we tested the full CT secondary range
(0–333mV). Vin is the voltage input of the op-amp circuit (also the CT secondary voltage) and Vout is the
voltage output of the op-amp circuit that is used by the ADC. Loads created using 300W incandescent light
bulbs.

converter (ADC) on the Arduino Due board. From the output of the current transformer we

obtained a voltage reading that would range from 0–333mV. This value is sinusoidal and

thus we rectified this signal to obtain instantaneous values of current being fed through to

the load.

The specifications of the Arduino Due board noted input ports are limited to a maxi-

mum input voltage of 3.3V to ensure no damage occurs to the board. The Arduino Due

board allows its users to work with power supplies of 3.3V. Thus to power up our op-

erational amplifiers (op-amps), we chose to use the 3.3V power supply along with the

MAX1044 charge pump to create the -3.3V power supply. This allowed our op-amps to

output a maximum of 3.3V and a minimum of -3.3V. If the op-amps saturates before reach-

ing the minimum or maximum output voltages, the output would never actually reach

3.3V and the microprocessor’s port maximum input voltage would never be exceeded. We

use a gain of 5 (= 100 k⌦
20 k⌦ ).

We performed a linearity test (see Figure 2.11) to verify the op-amp circuit we designed

did not saturate when rectifying an amplifying the CT secondary range (0–333mV). The

CTs we use (primary 200A, 100A, 50A, and 20A) all have the same secondary output range
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(0–333mV). The 20A CT was used for testing due to limitations and safety. We found that

due to different tolerances with resistors we had an actual gain of 6.9 not 5.

The firmware of our ammeter was designed to be simple and accurate when measuring

current. To provide accurate uniform sampling of each CT, we used a timing interrupt

running at 1kHz. We used sliding window averaging (the last 1000 samples) to smooth out

any jittering and sudden spikes in current readings. An I2C interface was also provided to

allow other equipment to receive measurement readings.

2.6 Worked Example

We now describe how our approach would work with our studio suite example in Sec-

tion 1.2. Ideally our occupant would have a smart meter installed in her suite. Once every

minute disaggregation information about the loads in her suite would be updated on an in-

formative display (Figure 2.12) located somewhere in her suite. The information displayed

would be a list of loads. Each load in the list would indicate what state that load was in,

the current power draw, the energy consumed since ON, and its cost. Loads that were

OFF would not be listed. For example, at 5:20pm the lights would be listed as ON with

a power draw of 480W with the energy consumed measured at 0.12kWh at a cost of 1.2¢,

the microwave be listed as ON with a power draw of 1100W with the energy consumed

measured at 0.02kWh at a cost of 0.2¢, and all other loads would not be listed because they

were OFF.

There are a number of different ways informative displays can be designed. There are

physical ambient forms like our ambient orb [1], to abstract visualizations [6, 9], to more

traditional forms like we depict in Figure 2.12. Design choices provide a range in the type

of feedback possibilities and have an impact on how occupants interact with their home

and this is very much an open research topic in the area of human-computer interaction.

2.7 Summary

We having made the decision to use low-frequency measurement sampling. We have also

developed prototype hardware for our disaggregator to run on. Next, we look at how var-

ious researchers have used models and inference algorithms to create their disaggregators.

We will also introduce our disaggregator.
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Figure 2.12: A prototype informative display showing what the occupant might see as described in Sec-
tion 2.6. The current date (on the calendar), time, and cost of electricity (top). Below is a six segment colour
display of current demand versus average historical demand (green = below, orange = normal, red = high
power usage). The current Demand table lists all tracked loads and highlights (in red) those that are ON. The
total cost for today and the current month are shown at the bottom of the screen. The home button (bottom)
would allow the occupant to return to this screen from other screens. Ideally there would be screens that
display historical aggregate information by date range (day, week, month, year) or by specific load.
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MODELS AND INFERENCE

Effective and efficient load disaggregation requires not only modelling of loads within a

house, but also algorithms to infer the different states of each load. Modelling and infer-

ence problems are widely studied in computing science, engineering, artificial intelligence,

and more specifically machine learning. These give us some good starting points for in-

vestigating the appropriateness of different modelling methods and inference algorithms.

In this chapter, we will introduce some algorithms that have been used for load disaggre-

gation and NILM. We investigate how we can build on existing methods to solve our load

disaggregation problem.

Many researchers have published vastly different approaches to load disaggregation.

Artificial Neural Networks (e.g. [36, 42]), Support Vector Machines (e.g. [44, 45, 52]), and

Nearest Neighbour (e.g. [34, 36, 44–46, 56]) algorithms have been popular methods for dis-

aggregation in the past. Artificial Neural Networks (ANN) [57, pp. 47–93] are easy to

use. However, both the construction and training of ANNs is arbitrary and tuning can

often result in the convergence on local maxima and overfitting. Support Vector Machines

(SVM) [57, pp. 119–132] use optimal line separation between classifications and do not suffer

from the same problems of ANNs1 provided the dataset used is not large. Nearest Neigh-

bour (k-NN) [57, pp. 183–186] is used to classify unlabelled data that is nearest to each

1As discussed in detail at http://www.svms.org/anns.html where a good discussion of SVM vs ANN is
presented.

38
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other (based on a distance function). However, this method can be memory intensive hav-

ing large storage requirements and can be susceptible to the curse of dimensionality. Since

2011, methods that use hidden Markov model (HMM) [57, pp. 347–361] have become a

focal point for most researchers [35,38,53,58–60]. HMM-based disaggregators are what we

will focus on in this chapter.

HMMs are a natural fit for disaggregation because they have the ability to model time

series data and represent the unobservable state of each load (Section 3.1). Amongst the

researchers who have used HMMs, there has been a focus on using factorial HMMs [35,

53, 59, 60] (Section 3.2). Although there is a focus on factorial HMM (and variants of) in

particular, there are other methods that are worth discussing: the Combined Load HMM

[58] (Section 3.3) and Viterbi Algorithm with Sparse Transitions [38] (Section 3.4). Our

approach to disaggregation does not make use of a factorial HMM (Sections 3.5). This is

supported by an investigation in Section 3.5.3 which shows how matrix sparsity needs to

be taken advantage of (Contribution 2). We finish with a worked example (Section 3.6)

that reflects on the example scenario we presented in Chapter 1.

3.1 HMM Basics

Since individual appliance internal states are not directly observed in the total consump-

tion rate reading, hidden Markov models (HMM) have been a natural choice for modelling

the disaggregation process. HMMs are also a simple and efficient machine learning algo-

rithm for modelling states over a length of time [57,61,62]. HMMs are built on the Markov

assumption which states that Markov property is assumed to hold for a given model. The

Markov property is a conditional probability distribution where the current state at t is

only dependant on the previous state at t - 1 and not on the sequence of states that pre-

ceded t- 1. This means inference is computationally inexpensive to perform provided the

number of states is not large.

A typical HMM can be defined as

� = {S,O,P
0

,A,B} , (3.1)

where S is a set of possible states, O is a set of possible observations, P
0

is the initial state

probabilities at time t
0

, A is the transition matrix, and B is the emission matrix. We can

define the total number of states as K = |S| and the total number of observations as N = |O|.
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The transition matrix A would then be defined as the probability for state transition from

t- 1 to t, with a K⇥K matrix where
P

i

A[i, j] = 1.0. The emission matrix B would then be

defined as the probability for seeing a particular observation at time t, with a K⇥N matrix

where
P

j

B[j, n] = 1.0. More formally we can say that

A[i, j] = p(S
t

= j|S
t-1

= i) , (3.2)

B[j, n] = p(O
t

= n|S
t

= j) . (3.3)

Although there are a number of algorithms for HMM decoding, such as the Viterbi

algorithm [63], and its variants, the main practical obstacle to load disaggregation is the

complexity (both space and time) involved in the process. To give an example, if each of the

M loads has a total of K internal states, the total number of HMM states is KM (assuming

for simplicity that all loads have the same number of states); this exponential size of the

state space has been a practical limitation to the wider application of disaggregation. With

just 11 loads you can have over 1,000,000 super-states. We call these super-states because

they are a combination of a number of separate load states. Super-states could also be seen

as equivalent to the state the house is in or the home state. We will expand on the super-state

idea in Section 3.5 as part of our approach to load disaggregation.

3.2 Factorial HMM and HSMM

To curtail the state exponentiality problem of HMMs, Kolter [59], Parsons [53], and John-

son [60], among others [64], have used factorial HMMs [65] (incl. semi-Markov) for dis-

aggregation. Such factorial models lead to lower complexity. For instance, 8 two-state

loads would have 28 or 256 states where factorial HMM (FHMM) would have 8 chains.

Each load is a separate Markov chain that can evolve in parallel to the others. Each chain

can represent either a simple ON/OFF or a multi-state load. We define simple ON/OFF

loads as a subset of multi-state loads. Because each load is a separate chain, dependencies

amongst separate loads is lost. Additionally, there is the added complexity of training these

chains [66] and exact inference is not possible, approximation methods must be used [59].

Kim et al. [35] used a combination of four factorial HMM variants to provide an un-

supervised learning technique. Factorial HMM (FHMM) was used in conjunction with a

fractional hidden semi-Markov model (FHSMM), a conditional factorial HMM (CFHMM),
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and a conditional factorial HSMM (CFHSMM). The FHMM modelled the loads and their

states. The FHSMM extended the FHMM and modelled load-state durations. The CFHMM

extended the FHMM and modelled time-of-day usage, load dependencies, and other sen-

sors (no details mentioned). The CFHSMM combined the FHSMM and CFHMM to model

load and additional feature dependencies with more accurate probability distributions. Pa-

rameter estimation was done using an expectation maximization (EM) algorithm where the

M-setup update was done using Gibbs sampling [65] because of intractable inference [17].

Emission probabilities used Gaussian distributions which were prone to overfitting. They

were not able to use the Viterbi algorithm to infer load states because of the intractability of

CFHSMM and instead used simulated annealing (SA) [67]. They achieved classification ac-

curacies of between 69%–98% (for 10 homes) using their M-fscore accuracy measure. Their

results seem to suggest the accuracy of the disaggregator quickly decreases as more ap-

pliances were added for disaggregation. Such a disaggregator requires a high degree of

computational power to disaggregate.

Kolter et al. [59] used a combination of two FHMM variants: additive FHMM and dif-

ference FHMM. Additive FHMM was used for finding the aggregate observed load. They

also used a difference FHMM that assumed the switch continuity principle [17] to estimate

state change by calculating the difference in the load from t - 1 and t. For FHMMs, exact

inference is not possible so they use an additive fractional approximate MAP (AFAMAP)

algorithm with predicted mean output. They achieved an average precision accuracy of

87.2% and an average recall accuracy of 60.3% based on the classification of 7 appliances

using two weeks of high-frequency data. Four of seven loads scored with moderate to

high accuracy, but loads such as electronics scored very low. Due to signal feature loss in

low-frequency data, this approach would produce lower accuracy when data sampling is

61Hz (see Section 2.5.2).

Parson et al. [53, 68] used a variant of the difference FHMM from Kolter et al. [59]. Par-

son proposed an EM training process that would train generic appliance models to specific

(to the house) appliance models. Their disaggregator used an extension of the Viterbi that

would run repeatedly, each time filtering out an appliance and subtracting the appliance’s

load from the aggregate total load. When all appliances were disaggregated processing

stopped. The Viterbi algorithm [63] was extended to ignore small joint probability obser-

vations and all sequences with joint probability were evaluated. They tested their disag-

gregator on data sampled at one minute intervals. They reported a mean normalized error
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in estimated load per day from as low as 38% to as high as 3469%. They also reported a

root-mean-square error overall time periods in power estimation from as low as 84% to as

high as 3107%. They have demonstrated that there is promise in being able to take general

appliance models and actively tune them using aggregated data. However, these demon-

strations have been done on a small number of cyclical type appliances such as fridges

and freezers which require a training window of data (e.g. fridges can require up to a 200

minute window). The use of such length training windows is more suited to an algorithm

that runs off-line on a server.

Recently, Johnson et al. [60] considered using the factorial variant of a hidden semi-

Markov model (HSMM) [69, 70] because they provided a means of representing state du-

rations in a load model. They introduced the idea of changepoint detection as a way to rule

out observations that would not present a learning opportunity for active tuning or in-

fer a state change. This allowed them to reduce the computational complexity. Although

the authors claimed this was unsupervised learning, they were incorrect [68]. This was

a supervised learning solution because they used labelled data to building the appliance

models. Further, their models were specific to a given dataset (REDD). Rather than having

their algorithm run on the entire dataset, they hand picked a number of specific segments

for testing and evaluation – this does not constitute a real world scenario.

Factorial models reduce the state exponentiality problem of HMMs but at the expense

of exact inference and load dependencies. While trying to avoid the complexity problems

of using a common HMM, these authors have introduced new complexities that deal with

model tuning approximate inference. It is difficult to see these factorial algorithms run in

real-time on embedded hardware. To this point, Parson has used a cloud computing based

solution [53] to perform algorithm execution, but this may raise data privacy and security

concerns amongst some consumers.

3.3 Combined Load HMM

Zia et al. [58] built their models using the sub-metering data for each load. Each load

was monitored for several days using low-frequency sampling at 0.1Hz. Once data was

collected, the sub-meters were removed. They determined load states and created an HMM

for each load by hand. The steady state signature is equated to load in a given state. Their

model was trained using a case statement, if the load’s signal fell within the bounds of
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a particular case then the load was said to be in that state. This same data was used to

create Gaussian distributions for the emission matrix. Two loads were then combined with

each other to make a larger HMM. They then used the Viterbi algorithm to decode the

observation sequence to find the most likely state sequence of the larger HMM. Pattern

matching was then performed on the state sequence to identify which load was in what

state.

Although Zia’s paper is arguably one of the first papers to make use of HMMs for

disaggregation, it is written in a way that makes the work difficult to reproduce and hard

to compare with other disaggregators. A two load combinatorial search was performed

until the observed total load was processed. It seems as though the total load is only ever

the summation of the 2 loads being tested. Combining and testing for only two loads is

not a realistic scenario. They do not report any accuracy results so it is hard to tell how

successful their disaggregator is.

3.4 Viterbi Algorithm with Sparse Transitions

Zeifman [38, 71] proposed Viterbi Algorithm with Sparse Transitions (VAST), a modified ver-

sion of the Viterbi algorithm, on multiple transition matrices (each a triple of loads), but

limited the number of load internal states to only two (ON or OFF). Such an approach

would require the approximation of a many-state load (e.g., the dishwasher) to be a sim-

ple ON/OFF load [38]. He ordered the lists of appliances by power demand and created

partitions that each had three and only three loads with overlapping Gaussian probability

distributions. Each appliance had two neighbouring appliances that were modelled us-

ing a Markov Chain. He used this modification to reduce the computational cost (due to

sparsity) that would have been produced by using a large transition matrix. For exam-

ple, using appliance pairs results in 16 possible state transitions (per pair) that need to be

computed; whereas, a triple of appliances (the original VAST algorithm [71]) resulted in 64

possible state transitions. The reduction in computational cost outweighed the reduction

in appliance detection accuracy, as fewer appliances were being compared to each other.

Zeifman created probability distributions based on power and duration features for

each load. He clustered negative power changes by �P and the hourly presence/absence

of the appliance running. He clustered positive power changes by �P and time duration

of the power spike. An ISODATA algorithm [72] was used to create the clusters. If clusters
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were too close they were merged and if a cluster contained multiple appliances it was

split. Clustering was no longer used after the initial distributions/clusters were created.

This resulted in distributions of power and time of the appliances.

Zeifman reported the accuracy of VAST to an average of 90.2% on 9 (simple ON/OFF)

loads using Kim’s M-fscore accuracy measure [35]. The majority of modern appliances

have a number of different operational states (not just ON/OFF) which severely limits

what loads VAST could disaggregate. Zeifman used triples of loads to avoid sparsity, but

it is worth noting that the three-load transitions matrices can still have zero-probability

elements and that the sparsity in the emission matrix was not dealt with.

3.5 Our Approach

Our disaggregator (Figure 3.1) first analyzes the sub-metered data from load (priors) and

creates a probability mass function for each (Section 3.5.1). Load states are then deter-

mined by quantizing the PMF further. Each of the load’s states are then combined to

create a super-state HMM (Section 3.5.2). The super-state HMM is very sparse, and ma-

trices are compressed to take advantage of this (Section 3.5.3). Once the super-state HMM

is built there is no need for further sub-metering. There is also no need for a pre-tuner.

The act of model building creates a super-state HMM that is in a steady-state without the

need of active tuning – a step using the forward-backward algorithm. We then take the

last times observation and the current observation and use our sparse Viterbi algorithm

(Section 3.5.4) to disaggregate the state of each load and estimate load consumption (Sec-

tion 3.5.5). The compression technique we use provides for a computationally efficient way

to perform exact inference in a way that is both space and time optimized to avoid the state

exponentiality problem HMMs have (Contribution 2).

Model Builder

Smart Meter

Super-State
HMM

Sparse Viterbi 
Algorithm

Sub-Meter
Data

Indicates process only required at initial startup/setup of disaggregator

Consumption 
Estimator

Figure 3.1: Block diagram of our disaggregator.
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Our solution preserves load dependence information (Contribution 5e) and a way to

perform exact inference in a computationally efficient manner (Contribution 5f), which is

not possible when using factorial HMM or VAST. For example, the condition when a heat

pump turns ON, the HVAC fan (on a separate breaker) increases its rotation speed, and

does the reverse when the heat pump turns OFF (as we have observed in our dataset [3]).

Unlike Zia [58], our disaggregator can determine load states automatically during model

building, can combine all loads into one super-state HMM not just two loads, and does not

require the added off-line pattern matching step. Kim et al. [35] has a number of issues,

the least being their use of 4 FHMMs to disaggregate which would not be able to run

on an embedded processor (Contribution 5c). Like Zeifman [38, 71] we take advantage

of matrix sparsity (in a different way). However, unlike Zeifman we can disaggregate

loads with complex multi-state power signatures – not just ON/OFF loads (Contribution
5d). In Chapter 5 we will show how our disaggregator can achieve a high degree for

both load classification and consumption estimation (Contribution 5b) using different low-

frequency sampling rates and different measurement (Contribution 5a).

3.5.1 Probability Mass Functions

It is uncommon for disaggregators to represent a load as a discrete distribution. Even

though a power signal is continuous by nature, we can only ever measure and record its

signal values discretely. As we discussed in Chapter 2, the rate at which we can sample

can be very fast, given the right equipment, but nonetheless it is still discrete. All the

researchers that have been cited in this chapter use Gaussian distributions which are con-

tinuous in nature. We take a different approach, and represent an appliance in a discrete

distribution by using a probability mass function (PMF). Studying power systems, we can

reflect on the nature of electrical systems and power. We know the following properties

to hold true: (a) measurements of current draw are discrete as a limitation of the measur-

ing device, (b) size of the breaker and/or the electrical limits of the load provide an upper

bound on the measurements of current draw, and (c) zero is a lower bound on the mea-

surements of current draw – current will never be negative. This forms our intuition for

using PMFs.

Let there be M independent discrete random variables Y
1

, Y
2

, . . . , Y
M

, corresponding

to current draws from M loads. Each Y
m

is the current or power measurement of a metered
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Figure 3.2: A stem diagram of the example PMF.

electric load with a PMF of p
Y

m

(n), where m is the load index i 2 {1, 2, ...,M}, y is a number

from a discrete set of possible measurements y 2 {0, 1, ...,N
m

}, and N
m

is the upper bound

imposed by the breaker that the m-th load is connected to. For example, with current

measurements (in dA) on a 15A breaker, we would have N
m

= 150. The PMF p
Y

m

(n) is

defined as follows:

p
Y

m

(n) =

8
<

:
Pr[Y

m

= n], if n 2 {0, 1, . . . ,N
m

},

0, otherwise,
(3.4)

where Pr[Y
m

= n] is the probability that the current/power draw of the m-th load is n. For

example, using Table 3.2, if the PMF of Y
m

is 2, then Pr[Y
m

= 2] = 0.25, so the probability

of the m-th load drawing 2 dA (i.e., 0.2 A) is 0.25.

Table 3.1: An Example PMF

n 0 1 2 3 4 5 6

j 900 80 100 620 200 100 0

p
Ym(n) 0.45 0.04 0.05 0.31 0.10 0.05 0.00

K
m

0 1

The probability Pr[Y
m

= n] is estimated from measurements over a sample period.

For example, if over T measurements, the current draw n was recorded j times, then

Pr[Y
m

= n] = j

T

. During the sample period each load is metered at a consistent rate of

one measurement per minute. This rate determines the time resolution at which the load

disaggregation will be performed.

Peaks in the PMF p
Y

m

(n) are designated as probable load states k 2 {0, 1, . . . , K
m

},

where K
m

+1 is the number of states for the m-th load. The states are assigned by quantiz-

ing the range of possible measurements [0,N
m

] (without gaps) so that each quantization

bin contains one peak of the PMF. For example, in Figure 3.2 and Table 3.2, there are two
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peaks in the PMF, so we would model this PMF by a two-state model, with states being

indexed {0, 1}. The probability of each state is the total probability mass within its quanti-

zation bin.

3.5.2 Super-State HMM

We model a house with M loads as an HMM � = {P
0

,A,B} having a row-vector of initial

prior probabilities P
0

of length K, a K⇥K transition matrix A, and a K⇥N emission matrix

B, where K is the number of whole-house states (or super-states), and N is the number of

possible observations. If t - 1 and t represent the previous and the current time instants,

the entries of A and B are defined as

A[i, j] = p(S
t

= j|S
t-1

= i) , B[j, n] = p(y
t

= n|S
t

= j) ;

where S
t

is the super-state at time t, and y
t

the observation at time t.

The super-state is composed of the states of all M appliances: S
t

= (X(1)
t

, X
(2)
t

, ..., X
(M)
t

),

where random variable X
(m)
t

is the internal state of the m-th load at time t. For example, a

dishwasher may have 4 internal states that consist of {OFF, WASH, RINSE, DRY}. The to-

tal number of super-states is K =
Q

M

m=1

K(m) where K(m) is the number of internal states

of the m-th appliance.

As the state of a load changes so too does its power or current draw. In this work we

consider current draw as the observation. Let y(·) be the current draw of the corresponding

internal appliance state, so that y
⇣
x
(m)
t

⌘
is the current draw of the m-th appliance in state

x
(m)
t

. For notational convenience, we assume that the current values are non-negative

integers, i.e., y
⇣
x
(m)
t

⌘
2 {0, 1, ...,N}; in practise, these would not necessarily be integers,

but would still be constrained to a discrete set of possible readings of the current meter.

The observed measurement at time t from the smart meter is the sum of the current draws

of individual appliances:

y
t

=
MX

m=1

y
⇣
x
(m)
t

⌘
. (3.5)

Model parameters, such as load state probabilities p(X(m)
t

= x
(m)
t

) as well as condi-

tional probabilities in A and B, can be obtained from existing load disaggregation datasets

(e.g. AMPds [3]). In general, even though the assumed full set of possible current draws is
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{0, 1, ...,N}, all appliances have fewer than N states. To model this, for the m-th appliance,

we quantize the set {0, 1, ...,N} into K(m) bins such that the first bin contains 0 (and corre-

sponds to the OFF state), while other bins are centred around the peaks of the empirical

probability mass function (see Section 3.5.1) of the current draw

p
Y

m

(n) = p
⇣
y
⇣
X
(m)
t

⌘
= n

⌘
, n 2 {0, 1, ...,N} , (3.6)

obtained from the dataset. A peak in the PMF is identified when the slope on the left,

p
Y

m

(n)-p
Y

m

(n-1), is positive, the slope on the right, p
Y

m

(n+1)-p
Y

m

(n), is negative, and

p
Y

m

(n) > ✏, where ✏ = 0.00021 used to ensure that small peaks (noise) are not quantized

as states. We chose the value of ✏ by observing the PMFs and finding that and spike that

had <=110 out of (524544) occurrences was not a state.

A simple example of such quantization is given in Table 3.2, where N = 6, but only

two states are identified after quantization, hence K(m) = 2. These states are indexed by

k(m) 2 {0, 1} and are centred around the values n = 0 and n = 3. The quantized states are

denoted bX(m)
t

. The current draws of the quantized states are stored as a K(m)-dimensional

vector, denoted y
(m)
peak

, whose elements are the locations of the peaks in the original PMF.

For the example in Table 3.2, y(m)
peak

[0] = 0 and y
(m)
peak

[1] = 3. The probability of a given

quantized state is simply the sum of probability masses in the corresponding bin, hence

for the above example,

p
⇣
y
⇣
bX(m)
t

⌘
= 0
⌘
= p(k(m) = 0) = 0.45

and

p
⇣
y
⇣
bX(m)
t

⌘
= 3
⌘
= p(k(m) = 1) = 0.55 .

Since K(m) 6 N, it can be seen that state quantization will increase the sparsity of A and B.

The super-state corresponding to quantized internal states is bS
t

= (bX(1)
t

, bX(2)
t

, ..., bX(M)
t

).

The quantized super-states can be indexed linearly in terms of the indices of the quantized

internal states k(1), k(2), ..., k(M) as follows:

k = k(M) +
M-1X

m=1

 

k(m) ·
MY

i=m+1

K(i)

!

. (3.7)
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Table 3.2: An example of PMF and state quantization

n 0 1 2 3 4 5

count(n) 900 80 100 620 200 100

p
Ym(n) 0.45 0.04 0.05 0.31 0.10 0.05

y
(m)
peak

0 3

k(m) 0 1

p(k(m)) 0.45 0.55

Based on (3.7), one can also extract individual load state indices k(m) from k by iteratively

extracting the remainder of division of k by partial products
Q

m

i=1

K(i), starting with k(M)

(see Algorithm 3.1).

Algorithm 3.1 KTH-CARTESIAN(k)

1: s [] # init as empty vector
2: k 0  k # assign the super-state
3:
4: for m = 1!M- 1 do # calc each load state
5: divisor 

Q
M

i=m+1

K(i)

6: s.append(k 0|divisor)
7: k 0  k 0

mod divisor

8: end for
9: s.append(k 0) # add last load’s state

10:
11: return s # return load states

3.5.3 Exponentially Large but Sparse Matrices

As the number of loads to disaggregate increases, the number of super-states K grows

exponentially (see Figure 3.3(a)), and so too do the dimensions of A and B. However, in

the case of load disaggregation these matrices are very sparse. In fact, so sparse that using

an HMM with full super-state space is a practical option. The theoretical sparsity of B is

clear from its definition. Since for each specific super-state

s
t

= (x(1)
t

, x
(2)
t

, ..., x
(M)
t

) (3.8)
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there is exactly one output

y
t

= y
⇣
x
(1)
t

⌘
+ y

⇣
x
(2)
t

⌘
+ · · ·+ y

⇣
x
(M)
t

⌘
, (3.9)

each row of B should contain exactly one non-zero element (and that element is equal to 1).

However, with quantization, this might not hold exactly, as the current draw may fluctuate

slightly within a quantized state even if the super-state does not change, so we may observe

several non-zero values in a given row of B, which of course should still sum up to 1. So

the best-case sparsity of B, defined as the fraction of zero entries, can be calculated as

1-
K

K ·N = 1-
1

N
. (3.10)

The sparsity in A refers to the fact there are relatively few possible transitions from any

given super-state. While this is not as obvious as in the case of B, it can be appreciated by

realizing that multi-state appliances usually operate in cycles that determine the sequence

of their states. For example, a possible state sequence for a dishwasher could be OFF !
WASH ! RINSE ! DRY ! OFF. Meanwhile, DRY ! WASH ! OFF would not make

much sense.

To give a real-world example, we examined one year’s worth of load data in the AMPds

dataset [3] and found that A was 43.2% sparse while B was 97.3% sparse, when using

two loads, clothes dryer (CDE) and kitchen fridge (FGE), each having 3 quantized internal

states (32 = 9 super-states). The house had a 200A service, so N = 200 if whole Ampere

measurements are used. In this scenario, the best-case sparsity for B would be 1 - 1

200

=

0.995 or 99.5%.

Sparsity of A and B can be used to simplify computations involved in Viterbi-based

state decoding, as will be described in the next section. In addition, storage requirements

can be significantly reduced. To this end, we employ the Harwell-Boeing sparse matrix for-
mat [73] (Algorithm 3.2) to store A and B in compressed form. Figure 3.3(b) compares the

amount of space needed for compressed and uncompressed A for disaggregating from 2 to

11 loads, based on the data from AMPds [3]. For 11 loads with 34,560 super-states, uncom-

pressed A requires about 9.6 GB, while compressed A requires only 93.8kB. We also define a

function to returning a list of tuples of all non-zero probability elements (see Algorithm 3.3)

which will be used for optimizing the our sparse Viterbi algorithm. Figure 3.3(c) compares

the amount of calculations saved when only non-zero probabilities are calculated.
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Algorithm 3.2 COMPRESS(M)

1: # these vectors constitute our compressed matrix M
2: val, row idx [] # init vectors to empty
3: col ptr [1] # init with initial value
4:
5: for col = 1!M[0].length() do # over all columns
6: for row = 1!M.length() do # over all rows
7: if M[row, col] 6= 0.0 then # non-zero prob only
8: val.append(M[row, col])
9: row idx.append(row)

10: end if
11: end for
12: col ptr.append(row idx.length() + 1) # add next col pointer
13: end for
14:
15: return (val, row idx, col ptr) # return compressed M

Algorithm 3.3 COLUMN-VECTOR(M, col)

1: v [] # init vector to empty
2:
3: # start at the column pointer, loop adding the stored row and non-zero probability
4: for i = M.col ptr[col]!M.col ptr[col+ 1]- 1 do
5: v.append((M.row idx[i],M.val[i]))
6: end for
7:
8: return v # return column vector

To show the benefits of taking advantage of sparsity, we used the AMPds. Our tests

showed that with 2 loads, each having 3 states (9 super-states), for every 1 section of

code execution (Algorithm 3.4, line 7) of sparse Viterbi, the conventional Viterbi algorithm

would, on average, execute the same section 72.7 times. Figure 3.3(d) shows the runtime

to disaggregate all readings (from 2 to 11 loads) by conventional and sparse Viterbi algo-

rithms. The savings are considerable, especially for more than 4 loads (135 super-states).

For example, for 2 loads, the execution time was reduced from 16.8 seconds to 11.4 seconds

(32% faster) and for 11 loads (34,560 super-states) the execution time was 94 minutes. Tests

were done on a MacBook Pro machine with a 2.6 GHz Intel Core i5 processor.
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(a) State Growth (b) Space Optimization

(c) Calculations Optimization (d) Runtime Results

Figure 3.3: Comparisons of optimization and runtime: (a) number of super-states (in thousands) as com-
pared to the number of loads disaggregated; (b) the size (in GB) of compressed vs uncompressed matrix A;
(c) a compression of calculations (in trillions) saved running our sparse Viterbi algorithm to disaggregate
524,544 readings; and (d) runtime (in minutes) comparison of conventional and sparse Viterbi algorithms
when disaggregating 524,544 readings.
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3.5.4 Sparse Viterbi Algorithm

The standard Viterbi algorithm is well suited for largely populated matrices. However,

when used with sparse matrices, there is an extensive amount of naive probability cal-

culations involving zero-probability terms. Harwell-Boeing matrix compression not only

reduces the amount of storage, but it also allows us to avoid calculating zero-probability

terms. Taking advantage of matrix sparsity to avoid unnecessary calculations forms the

basis of our algorithm called sparse Viterbi algorithm (see Algorithm 3.4), which is based on

a greedy version of the Viterbi algorithm [57, pp. 352].

Let y
t-1

and y
t

be the total current measurements at times t - 1 and t. The goal is

to infer the quantized super-state bs
t

(or, equivalently, its index k
t

), from which we will

determine the quantized internal states. This will be achieved by decoding the internal

states’ index from the super-state index using (3.7). These posterior probabilities are stored

in vector P
t-1

as part of initialization (Algorithm 3.4, lines 1–5), directly from [57].

P
t-1

[j] = P
0

[j] · B[j, y
t-1

], j = 1, 2, ..., K . (3.11)

The computation is reduced by only considering non-zero elements of B[j, y
t-1

] in (5.4), to

be clarified below. We now calculate the posterior probabilities for the current time period

(the recursion step, Algorithm 3.4, lines 7–10)

P
t

[j] =
K

max

i=1

(P
t-1

[i] ·A[i, j] · B[j, y
t

]), j = 1, 2, ..., K . (3.12)

We terminate (Algorithm 3.4, line 12) to find the most likely current super-state index

k
t

= argmax(P
t

) . (3.13)

This algorithm is called each time we need to disaggregate a reading, using a sliding window
of observations. For example, we disaggregate t = {1, 2}, then t = {2, 3}, t = {3, 4}, and so

on. Disaggregation only begins when the first 2 observations are received from the meter.

For our purposes we are not interested in the prediction of the super-state from t - 1 (the

backtracking step). Once the k
t

is determined feedback is sent to the occupant – this makes it

final, no turning back time. Note that we conducted additional experiments using P
t

rather

than the P
0

suggested by Marsland in (5.4) for subsequent time periods, but there was a



CHAPTER 3. MODELS AND INFERENCE 54

degradation in accuracy results. We had hoped that using P
t

would result in better accu-

racy, but it turned out the initial values of P
0

were more reliable. Again, zero-probability

terms are avoided in the calculation. The zero-probability terms are effectively ignored due

to the Harwell-Boeing matrix compression method, which only stores non-zero elements

of the corresponding matrices. A call to the function COLUMN-VECTOR() (Algorithm 3.4,

lines 2, 5, and 6) only returns non-zero elements, which removes zero probability terms

from the calculations.

Algorithm 3.4 DISCRETE-SPARSE-VITERBI(K,P
0

,A,B, y
t-1

, y
t

)

1: P
t-1

[k],P
t

[k] 0.0, k = 1, 2, ..., K # step 1: initialization
2:
3: for (j, p

b

) 2 COLUMN-VECTOR(B, y
t-1

) do
4: P

t-1

[j] P
0

[j] · p
b

5: end for
6:
7: for (j, p

b

) 2 COLUMN-VECTOR(B, y
t

) do # step 2: recursion
8: (i, p

a

)[] COLUMN-VECTOR(A, j)
9: P

t

[j] max(i,p
a

)(Pt-1

[i] · p
a

· p
b

)
10: end for
11:
12: return argmax(P

t

) # step 3: terminate

3.5.5 Load Consumption Estimation

If we know the current/power draws of each appliance y
(m)
t

, we could sum these levels

y
t

⌘
MX

m=1

y
(m)
t

, (3.14)

and the total should equal the aggregate reading from the smart meter y
t

. However, the

consumption amount of each load is hidden because the state of each load is hidden. We

can estimate the amount of consumption draw for each load by y(ˆx(m)
t

). The current draw

of the decoded quantized state ˆx
(m)
t

is assumed to be the location of the corresponding

PMF peak, i.e., y(ˆx(m)
t

) = y
(m)
peak

[k(m)
t

], where k
(m)
t

is the index of the decoded quantized

internal state of appliance m at time t. To find the estimate of the whole-house we simply
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sum the load estimates

ˆy
t

=
MX

m=1

y(ˆx(m)
t

) =
MX

m=1

y
(m)
peak

[k(m)
t

] . (3.15)

As we will demonstrate with experiments in Chapter 5, this simple method is quite accu-

rate.

3.6 Worked Example

We now describe how our approach would work with our studio suite example in Sec-

tion 1.2. The data for our example scenario (Table 1.3) ends at 6:00pm. For illustration, let

us say that at 6:01pm the smart meter reports an aggregate power reading of 3.48kW. We

want to disaggregate this with our disaggregator. First we would need to build a model of

the studio suite. This would involve using our priors (i.e. the data from Table 1.3) to build

a PMF for each load (Table 5.4), a super-state HMM for the entire studio suite was: T = 61,

M = 5, N = 15000 or 15kW (120V ⇥ 125A service), K = 25 = 32 super-states (since each

load only has 2 states),

P
0

= [0, 0, 0, 0, 0.098, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.115, 0.082, 0.098, 0, 0.033, 0, 0.016, 0, 0.262,

0.033, 0, 0, 0.164, 0.049, 0.049, 0],

A = { val = [ 0.857, 0.714, 0.2, 0.5, 0.143, 0.8, 0.143, 0.833, 0.5, 0.143, 0.167, 0.938, 0.111,

0.063, 0.5, 0.889, 0.333, 0.333, 0.5, 0.667, 0.667, 1 ], row idx = [ 4, 16, 17, 20, 16, 17, 16, 18, 20,

4, 18, 24, 28, 24, 25, 28, 29, 30, 25, 29, 30, 22 ], col ptr = [ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 4, 6, 8, 8, 10, 10, 11, 11, 13, 15, 15, 15, 18, 20, 22, 22 ] } (a full matrix would be 97.85%

sparse), and

B = { val = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],

row idx = [ 0, 8, 16, 24, 2, 10, 18, 1, 26, 9, 17, 25, 3, 11, 4, 19, 12, 27, 20, 28, 6, 14, 22, 5, 30, 13,

21, 29, 7, 15, 23, 31 ], col ptr = [ 0
1

, 1
250

, 2
230

, 3
250

, 4
370

, 5
250

, 6
230

, 7
20

, 8
230

, 9
20

, 10
230

,

11
250

, 12
370

, 13
250

, 14
50

, 15
180

, 16
70

, 17
180

, 18
50

, 19
250

, 20
370

, 21
250

, 22
230

, 23
20

, 24
230

,

25
20

, 26
230

, 27
250

, 28
370

, 29
250

, 30
230

, 31
250

, 32
8571

] } (subscript values indicate number of
times the number occurs, a full matrix would be 99.99% sparse).

We can now perform inference and consumption estimation using our sparse Viterbi

algorithm (Algorithm 3.4). We know that the observation at t - 1 is y
t-1

= 3730 and the
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Table 3.3: PMF and state quantizations for loads in the studio suite example

(a) Lights, m = 1

n 0 ... 480 ... 15000

count(n) 6 0 55 0 0

p
Ym(n) 0.10 0.00 0.90 0.00 0.00

y
(m)
peak

0 480

k(m) 0 1

p(k(m)) 0.10 0.90

(b) Ent/TV, m = 2

n 0 ... 250 ... 15000

count(n) 27 0 34 0 0

p
Ym(n) 0.44 0.00 0.56 0.00 0.00

y
(m)
peak

0 250

k(m) 0 1

p(k(m)) 0.44 0.56

(c) Heating, m = 3

n 0 ... 3000 ... 15000

count(n) 36 0 25 0 0

p
Ym(n) 0.59 0.00 0.41 0.00 0.00

y
(m)
peak

0 3000

k(m) 0 1

p(k(m)) 0.59 0.41

(d) Microwave, m = 4

n 0 ... 1100 ... 15000

count(n) 51 0 10 0 0

p
Ym(n) 0.84 0.00 0.16 0.00 0.00

y
(m)
peak

0 1100

k(m) 0 1

p(k(m)) 0.84 0.16

(e) Kettle, m = 5

n 0 ... 1600 ... 15000

count(n) 51 0 10 0 0

p
Ym(n) 0.84 0.00 0.16 0.00 0.00

y
(m)
peak

0 1600

k(m) 0 1

p(k(m)) 0.84 0.16

current time observation is y
t

= 730. We would call

DISCRETE-SPARSE-VITERBI(K,P
0

,A,B, 3730, 730).

The following computational steps would occur:

Line 1: previous time probability vector P
t-1

of length K initialized to 0.0

Line 1: current time probability vector P
t

of length K initialized to 0.0

Line 3: call to COLUMN-VECTOR(B, 3730) returns [(28, 1.0)]

Line 4: P
t-1

[28] = P
0

[28] · 1.0 = 0.164 · 1.0 = 0.164

Line 4: P
t-1

= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.164, 0, 0, 0]

Line 7: call to COLUMN-VECTOR(B, 730) returns [(24, 1.0)]
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Line 8: call to COLUMN-VECTOR(A, 24) returns [(28, 0.111)]

Line 9: P
t

[24] = max([0, 0.018]) = 0.018

Line 9: P
t

= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.018, 0, 0, 0, 0, 0, 0, 0]

Line 12: k
t

= argmax(P
t

) = 24, which is the super-state or the state the studio suite is in

Line 12: k
t

= 24 ⌘ bS
t

= [1, 1, 0, 0, 0], meaning that only the loads, lights and TV, are ON

We know that k
t

⌘ bS
t

because a call to KTH-CARTESIAN(24) (Algorithm 3.1) returns

a vector of load states [1, 1, 0, 0, 0] of length M which shows the lights and TV are both in

state 1 or ON and the heating, microwave, and kettle are in state 0 or OFF. Knowing the

load states allows us to now estimate the power consumption rate of each load, and indeed

the whole studio suite. We do this by a simple summation, as defined in (3.15),

X

m

y
(m)
peak

[k(m)
t

] = 480+ 250+ 0+ 0+ 0 = 730 .

The consumption estimate is 730W, where the lights are consuming 480W, the TV is con-

suming 250W, and all other loads are OFF with 0W consumption.

3.7 Summary

We have presented our disaggregator which is our main contribution (Contribution 5) to

this thesis. Our disaggregator has many advantages over existing disaggregators, mainly

its ability to perform exact inference and preserve load dependencies. In the next Chap-

ter we review existing accuracy measures and we explore how to test the accuracies of

disaggregators in a consistent and comprehensive way.
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4
ACCURACY

Trying to disaggregate loads from a single monitoring point is a difficult problem when

it comes to accuracy. Creating accurate models of consumption relies on good priors (i.e.

datasets) and a good way to measure the accuracy of the disaggregator. Load disaggre-

gation is a fairly new research area and there is no accepted way nor accepted best prac-

tises to report algorithm accuracies. A review of disaggregator research has led us and

others [35, 74] to the conclusion that there is no consistent way to measure performance

accuracy. Any disaggregator performs two main functions: the classification of what load

is running in what state, and the estimation of how much that load is consuming. Classifi-

cation and estimation are often two separate and distinct functions that the disaggregator

executes. This means different accuracy measures need to be considered, ones that best

measure each function. In other words, the accuracy of classification and estimation func-

tions need to be measured differently.

In recent years a number of datasets have been publicly released (including our own [3])

so that researchers can test the accuracy of their disaggregators (Section 4.1, Contribu-
tion 3). We review what types of accuracy measures, common to other research areas,

that disaggregation researchers have used, such as basic accuracy and f-score (Section 4.2).

We then review new accuracy measures created specifically for load disaggregation (Sec-

tion 4.3). We critically discuss problems that exist with all these accuracy measures and

then present our approach to accuracy reporting. We present a comprehensive approach

(Section 4.4) supported by a worked example (Section 4.5). We show how any one single

58
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accuracy measure can report high accuracies that may be misleading (Contribution 4).

4.1 Public Datasets

There are existing datasets for load disaggregation researchers to use – each with significant

limitations. These datasets generally provide only a power measurement for the whole-

house and/or multiple house loads. There are only a handful of datasets due to the costs

involved with equipment purchase and installation. We briefly discuss some of the more

popular datasets that exist as of writing this thesis.

The MIT Reference Energy Disaggregation Data Set or REDD [55] supplies high and

low frequency readings specifically for residential load disaggregation for a short period

of time (from a few weeks to a few months). Zeifmann [38] found that whole-house mea-

surements were provided in apparent power and individual circuits were measured in real

power. Consequently, the sum of individual circuits did not equal the whole-house. The

CMU Building-Level fUlly labeled Electricity Disaggregation dataset or BLUED [75] contains

high frequency readings of a single family home with a list of appliance events, but only

for one week. The UMASS Smart* Home Data Set [76] contains high and low frequency

readings, but is not specifically designed for NILM evaluation. The Tracebase dataset [77]

contains appliance power traces sampled at intervals of one second. The Indian Dataset for

Ambient Water and Energy (iAWE) [78] contains the data of 33 houses sampled at 1Hz. The

UK Domestic Appliance-Level Electricity (UK-DALE) [79] which is formatted like REDD

and has whole-house readings sampled at 16kHz and appliances sampled at 1

6

Hz. There

are organizations that provide datasets for their customers. For example, Green Button has

a number of sample datasets publicly available from their website 1. The Plugwise dataset

was used by Kolter [52] but is a private dataset only available upon written request to the

company.

Recently there has been research devoted to the unification of dataset descriptions and

the creation of a common metadata schema [80]. The main driving force for this is to have

a standard way to import different datasets that have vastly different file structures. This

was an addition to Batra et al. [81] releasing an open source NILM toolkit called NILMTK 2.

NILMTK can upload a number of different datasets into a common Python data structure.

1see http://www.greenbuttondata.org/greendevelop.aspx
2see http://nilmtk.github.io
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It also provides statistical functions that filter out dataset errors and allow for data resam-

pling. Two disaggregators are also included: a combinatorial optimizer and a factorial

HMM.

4.2 Common Methods

The most basic accuracy measure used by a majority of load disaggregation researchers is

defined as

Acc. =
correct matches

total possible matches
. (4.1)

Tsai et al. [36] used this accuracy measure by employing correct signals matched (no further

details), and Chang et al. [42] used recognition accuracy on both their training and the test-

ing results. Both reported high accuracies of >95% and 100%, respectively. These numbers

can be misleading because they do not measure the classification’s performance [82, 83].

For example, if a fridge is running only 10% of the time and a disaggregator (100% of that

time) says the fridge was not running it would have a measured accuracy of 90%. Kim

et al. [35] points out that accuracy results are “very skewed because using an appliance

is a relatively rare event .... appliances [that] are off will achieve high accuracy”. Better

accuracy performance measures need to be considered.

F-score (f-measure or F
1

score) is the harmonic mean of precision and recall:

F
1

= 2· precision· recall
precision+ recall

, (4.2)

where precision is tp ÷ (tp + fp) and recall is tp ÷ (tp + fn), where tp are true-positive

results, fp are false-positive results, and fn are false-negative results. This form of ac-

curacy measure is often found in information retrieval and text/document classification.

Figueiredo et al. [44,45] used f-score to measure their disaggregator based on 50 samples of

data for each appliance. Berges et al. [34] used f-score for both training and testing of their

disaggregator comparing 5.5 days of consumption where the disaggregator predictions of

an appliance was compared to the corresponding plug-level meter readings. Kim et al. [35]

argued that f-score measures binary classifier outcomes and power signals are not binary.

This suggests that a better accuracy performance measure needs to be considered.
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Around the same time, Zeifman et al. [74] showed there are two types of errors that

need accuracy measures: false detection (Type I) and missed detection (Type II). He ar-

gued that the receiver operating characteristic (ROC) curve (see [82]) depicts the “trade-off”

between the specificity (Type I) and sensitivity (Type II) of those errors and this “trade-off”

needs to be assessed. Specificity is tn÷ (tn+ fp) and sensitivity is the equivalent of recall.

ROC uses specificity and sensitivity to evaluate the performance of an algorithm on one

type of classification [83]. Later, Zeifman [38] abandons the ROC argument in favour of the

modified f-score measure (discussed in the next section).

4.3 New Methods

Kim et al. [35] presented modified f-score (M-fscore) which they argued was more suited for

measuring the accuracy performance of disaggregators. They argue that we should not

only measure the accuracy of the classification of the state of the appliance, additionally

we should measure the accuracy of the predicted appliance consumption. To measure the

accuracy of state classification we define the binary classification as such:

label =

8
<

:
positive, if power > 0 ,

negative, otherwise .
(4.3)

To measure the accuracy of the predicted appliance consumption, tp is divided into 2 mea-

surements: accurate true-positives (atp), and inaccurate true-positives (itp)– predicted

power consumption that is significantly different from the ground truth would be labelled

as itp. The prediction is defined as follows:

prediction =

8
>>>>>>>>><

>>>>>>>>>:

tn, if ˆc = 0^ c = 0 ,

fn, if ˆc = 0^ c > 0 ,

fp, if ˆc > 0^ c = 0 ,

atp, if ˆc > 0^ c > 0^ � 6 ⇢ ,

itp, if ˆc > 0^ c > 0^ � > ⇢,

(4.4)

where � is the error ( ĉ-c

c

), ⇢ is the error threshold, c in the ground truth consumption, and
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ˆc is the predicted consumption. Precision is redefined as

precision =
atp

atp+ itp+ fp
, (4.5)

and recall is redefined as

recall =
atp

atp+ itp+ fn
. (4.6)

M-fscore is now the harmonic mean of the redefined precision and redefined recall.

Accuracies based on power estimation also need to be reported to show how accu-

rately the disaggregator can estimate how much power is being consumed compared to

actual (ground truth) consumption. This is important because systems that disaggregate

need to report to occupants what portion of a power bill can be attributed to each appli-

ance. Additionally, when dealing with time-of-use billing (charging more per kWh at peak

times), occupants need to know how much might have been saved if certain appliances

(e.g. a clothes dryer) were not used during the peak period.

A method used to report estimation accuracies was developed by Kolter and John-

son [55]. They provide the equation

Est.Acc. = 1-

P
M

m=1

P
T

t=1

|ˆy
(m)
t

- y
(m)
t

|

2 ·
P

M

m=1

P
T

t=1

y
(m)
t

(4.7)

where T is the time sequence length, M is the number of appliances, ˆy(m)
t

is the estimated

power consumed at time t for appliance m, and y
(m)
t

is the ground truth power consumed

at time t for appliance m.

4.4 Our Approach

We have released our own dataset which focuses on low-frequency data that has clean

values. Other datasets (e.g. REDD) have a high number of erroneous entries which each

researcher has been left to clean up using different ways. This makes it hard to compare

the results of different researchers that use REDD – their results may be skewed based on

the way they scrubbed the data.
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Basic accuracy measure is not suited for disaggregation and reports artificially high

accuracies because of the rare nature of most loads running. F-score is a very widely used

classification accuracy measure, but for binary classifications. With the majority of loads

running in different states, f-score as it stands is not a good measure for disaggregation.

M-fscore was derived to take into account the non-binary nature of disaggregation, but it

combines classifications and estimation accuracy. While this gives a good overall score,

it does not provide detailed diagnostic information of how accurate the classification task

and the estimation task are on their own. However, we need to consider other issues.

4.4.1 Almanac of Minutely Power dataset

We have also released our own dataset Almanac of Minutely Power dataset or AMPds [3]

(Contribution 3) 3. Modern home appliances now have embedded electronics that allow

for different modes of operation creating complex behaviours. The real challenge for dis-

aggregators is the need to detect these complex, multi-state appliances and loads. To that

end, we have created AMPds which contains complex, multi-state loads. Our dataset is a

record of energy consumption of a single house using 21 sub-meters for an entire year (from

April 1, 2012 to March 31, 2013) at one minute read intervals. An additional year’s worth

of data is planned for release. We chose a one minute interval due to concerns over data

communication network saturation, but this comes at a cost of loss of fidelity (i.e. missing

power measurement spikes that could help identify loads more easily) [53]. We monitored

a house built in 1955 in the greater Vancouver region in British Columbia, which under-

went major renovations in 2005 and 2006–receiving a Canadian Government EnerGuide 4

rating of 82% which is classified as an energy-efficient house (in the range of 80–90%).

Using branch circuit power metering (BCPM, see Figure 4.1) we metered 21 breakers

from the house power panel. The two BCMP units were queried once per minute by an in-

dustrial data acquisition server (see Figure 4.2(a)). Table 4.1 lists the BCPM measurements

captured.

For natural gas metering there were two meters: the whole-house meter (WHG) and

the gas furnace meter (FRG). For water metering there were also two meters: the whole-

house meter (WHW) and the hot water meter (HTW). Figure 4.3 shows the pulse meters

3dataset can be download from http://ampds.org
4see https://www.nrcan.gc.ca/energy/efficiency/housing/new-homes/5035
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Figure 4.1: Two DENT PowerScout 18 units metering 24 loads at the electrical circuit breaker panel. Mea-
surements are read over a RS-485/Modbus communication link by data acquisition equipment (see Fig-
ure 4.2(a)).

used. Table 4.2 lists the pulse measurements captured by the data acquisition server (see

Figure 4.2(b)) for both natural gas and water consumption.

The data acquisition servers (Figure 4.2) push data captured to a remote, off-site MySQL

server via an HTTP POST. When creating the AMPds comma separated value (CSV) files,

we first cleaned the dataset by removing incomplete captures (i.e. some sub-meters had

data missing for different timestamps), resulting in the removal of 1,054 rows. The dataset

contains 524,544 valid readings per sub-meter. For the power metering we added a meter

labelled UNE (or unmetered loads) as a soft-meter that is calculated by subtracting the sum

of the sub-meters from the WHE whole-house power meter. Four sub-meters (the gas cook-

top sub-meter, the microwave sub-meter, and the partial lights sub-meter) were removed

from the dataset for they did not have enough activity.
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(a) Power Data Acquisition (b) Gas and Water Data Acquisition

Figure 4.2: Data acquisition units: (a) is an Obvius AcuiSuite EMB A8810 for communicating via Modbus
to the 2 branch circuit power meters (BCPM), and (b) is an Obvius AcuiLite EMB A7810 for recording
pulses from the natural gas and water meters. These units have a maximum read rate of once per minute.

4.4.2 Ground Truth and Bias

Disaggregation researchers need to describe in detail the data they are using to build mod-

els, to train them, and to test those models on their algorithms. If they are using data from

publicly available datasets such as AMPds [3] and REDD [55], they need to discuss the

method used to clean the data. For instance, how they dealt with incomplete, mismatched,

or erroneous data. These specifications form part of Contribution 4.

There also needs to be a clear statement on whether the testing included noise or was de-
noised. Noise can be defined as the amount of power remaining once all the power reading

from each load has been subtracted from the whole-house power reading:

noise = y
t

-
MX

m=1

y
(m)
t

, (4.8)

where y
t

is the total ground truth or observed value at time t, M is the number of ap-

pliances, ˆy(m)
t

is the estimated power consumed at time t for appliance m, and y
(m)
t

is

the ground truth power consumed. In denoised data, the whole-house power reading is

equal to the summation of all appliance power readings – which we often refer to as the

unmetered load or appliance. Using denoised data will cause higher accuracies to be re-

ported but does not reflect a real-world application. Further, what needs to be reported is
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(a) Gas Main Meter (b) Gas Furnace Meter

(c) Water Main Meter (d) Hot Water Meter

Figure 4.3: Pulse meters for natural gas (a), (b) and water (c), (d); (a) is an Elster AC250 gas meter, (b) is
an Elster BK-G4 gas meter, and (c) and (d) are Elster/Kent V100 water meters. Measurements are electrical
pulses that are read by data acquisition equipment (see Figure 4.2(b)). Each pulse represents a quantity on
consumption.
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Table 4.1: Electricity Measurements Captured

Column Description Units

0 Unix Timestamp (since Epoch) s
1 Voltage (V) V
2 Current (I) A
3 Frequency (f) Hz
4 Displacement Power Factor (DPF) ratio

5 Apparent Power Factor (APF) ratio

6 Real Power (P) W
7 Real Energy (Pt) Wh
8 Reactive Power (Q) VAR
9 Reactive Energy (Qt) VARh
10 Apparent Power (S) VA
11 Apparent Energy (St) VAh

Table 4.2: Natural Gas & Water Measurements Captured

Column Description Gas Units Water Units

0 Unix Timestamp (since Epoch) s s
1 Pulse Counter dm3 L
2 Average Rate dm3/h L/min
3 Instantaneous Rate dm3/h L/min

the percent-noisy of each test. This percent-noisy measure (%-NM) would be calculated on

the ground load data as such:

%-NM =

P
T

t=1

|y
t

-
P

M

m=1

y
(m)
t

|
P

T

t=1

y
t

(4.9)

where y
t

is the aggregate observed current/power amount at time t and y
(m)
t

is the ground

truth current/power amount for each appliance m to be disaggregated. For example, a

denoised test would result in 0%; whereas, a %-NM of 0.40 would mean that 40% of the

aggregate observed current/power for the whole test was noise.

Researchers should use standard methods to minimize any effects of bias. Bias occurs

when data used for training is also used for testing which would result in the reporting of

higher accuracies. A well accepted method used by the data mining community to avoid
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bias is 10-fold cross-validation [84, pp. 109]. This simple method splits the ground truth data

into 10 subsets of size n

10

. Disaggregators can be trained on 9 of the subsets and accuracy

testing is performed on the excluded subset. This is repeated 10⇥ (each time a different

subset is used for testing) and the mean accuracy is then calculated and reported. We

report the dataset we use as ground truth and any modifications that were made. This

could include: modifications such as down-sampling, the cleaning of erroneous data, what

loads were used, and how the aggregate house reading modified, if it was. Modifications to

aggregate readings may be done to denoise the data and exclude the consumption amount

from the loads not disaggregated. We also have chosen to use 10-fold cross-validation to

minimize bias in our accuracy results.

4.4.3 Accuracy Measures

Kim et al. [35] approach combined load state classification and power estimation accuracies

even though in many instances classification and estimation are two distinct functions of

disaggregation. Combining classification and estimation hides important diagnostic infor-

mation as to what parts of disaggregation has low accuracy. Furthermore, these accuracies

require a specific type of accuracy measure that is suited for that function, which can lead

to better diagnostic and performance information.

For classification accuracy measure we use f-score as defined in (4.2). However, we re-

purpose and modify Kim’s [35] M-fscore to measure the classification of loads states only,

which we call finite-state f-score (FS f-score). FS f-score (Contribution 4) uses precision as

defined in (4.5) and recall as defined in (4.6). We redefine atp (accurate true-positives) and

itp (inaccurate true-positives) as penalization for inaccurate classification of load state and

not penalization for inaccurate power estimation. If fp are the false-positives (predicted

but not real) classifications, and fn are the false-negatives (real but not predicted) classifi-

cations, then the binary classification of tp (true-positives) would be tp = atp + itp. We

now can penalize the classification score based on how far the predicted state is from the

ground truth state. To calculate itp, we use

itp =
|ˆx

(m)
t

- x
(m)
t

|

K(m)
, (4.10)

where ˆx
(m)
t

is the estimated state from appliance m at time t, x(m)
t

is the ground truth state,
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and K(m) is the number of states for appliance m. To determine the atp we use the equation

atp = 1- itp . (4.11)

Tracking atp, itp, fp, and fn for each appliance would allow for appliance specific report-

ing. A summation over all loads M on each of atp, itp, fp, and fn would allow for overall

classification accuracy reporting. We report both overall and load specific classification

accuracy scores.

As we discussed before, accuracies based on power estimation also need to be reported

(both overall and load specific). The method we use to report estimation accuracies is

defined in (4.12). This method allows for overall estimation accuracy reporting. By elimi-

nating the two summations over M we can then report estimations for each appliance

Est.Acc.(m) = 1-

P
T

t=1

|ˆy
(m)
t

- y
(m)
t

|

2 ·
P

T

t=1

y
(m)
t

. (4.12)

Both classification accuracy and estimation accuracy need to be reported in overall

scores and in appliance specific scores. Reporting how each appliance scores is impor-

tant for identifying strengths and weaknesses of different disaggregators. With this more

detailed accuracy information, one could imagine a system that could select different al-

gorithms depending on the context (including specific history) of the disaggregation task.

Finally, although more detailed information has its advantages, reporting specific scores

for appliance states is not necessary because different makes/models of appliances will

have a different number for states at different power levels.

4.5 Worked Example

We investigated how basic accuracy can be misleading, by reporting high confidence num-

bers that do not accurately reflect inaccuracies, at predicting rare events. For many loads

changing state is rare. We also show why M-fscore, which combines classification and esti-

mation, is not a detailed enough measure. We used AMPds data for this test. Current draw

(I) values were rounded up to the nearest whole-Ampere and 10-fold cross-validation was

used on the entire 1 year of data. The whole-house current draw measurement was de-

noised so that it equalled the summation of the current draw from the 11 loads chosen for
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disaggregation. The results are listed in Table 4.3.

Table 4.3: Sample Accuracy Results For Disaggregating Using Whole-Ampere Measurements

ID Load Accuracy Precision Recall FS F-Score Estimation

Overall Score 97.3% 90.4% 92.8% 91.6% 99.4%
BME Basement 96.3% 85.5% 85.2% 85.3% 96.6%
CDE Clothes Dryer 99.3% 93.7% 68.3% 79.0% 97.1%
CWE Clothes Washer 97.9% 35.6% 7.0% 11.6% 60.1%
DWE Dishwasher 98.8% 71.7% 74.2% 72.9% 88.7%
FGE Kitchen Fridge 88.2% 79.1% 91.6% 84.9% 93.6%
FRE HVAC/Furnace 99.8% 99.9% 99.9% 99.9% 98.8%
GRE Detached Garage 99.9% 1.3% 0.3% 0.5% 54.0%
HPE Heat Pump 99.7% 98.4% 97.3% 97.8% 99.8%
OFE Home Office 94.7% 29.6% 23.4% 26.1% 87.8%
TVE Entertainment/TV 95.4% 70.4% 86.8% 77.7% 95.5%
WOE Wall Oven 99.8% 75.0% 61.3% 67.5% 96.6%

Table 4.3 reports basic accuracy score as being far better than FS f-score. This is most

noted for the results of the GRE load. Overall, the FS f-score and estimation of our test

scores high, but this masks the fact that loads: CWE, GRE, and OFE did not score well at

all. As well, the OFE load shows how there can be a high estimation score but a very low

FS f-score – which means reporting only estimation hides low classification scores.

4.6 Summary

We have introduced our own dataset (AMPds) and have critically discussed problems that

exist with all accuracy measures. We then presented our approach to accuracy reporting,

which we believe is a comprehensive approach which was followed by a worked example.

This chapter was critical in laying the ground work for the next chapter that reports the

results of different experiments we tested on our disaggregator.
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5
EXPERIMENTS

In this chapter we will show how the implementation of our disaggregator (µDisagg) meets

all our claims listed in Contribution 5. We start by defining a number of terms that we will

use consistently throughout this chapter when reporting results (Section 5.1). Next, we

discuss how we performed our experimental tests and the testing procedure we used (Sec-

tion 5.2). Then, we discuss how we modified our disaggregator to use continuous emis-

sions to compare against discrete emissions (Section 5.3). These sections set the foundation

for our experimental test.

We want to show there is indeed dependency amongst loads and in some cases the cor-

relation is quite high. In Section 5.4 we use correlation coefficient tests to show load depen-

dencies (Contribution 5e) which, along with exact inference (Contribution 5f), µDisagg

uses. How µDisagg uses load dependencies and exact inference was discussed in Chap-

ter 3. In Sections 5.5 and 5.6 we show how µDisagg can disaggregate using different low-

frequency sampling rates and different measurements (Contribution 5a) while achieving

a high degree for both load classification and consumption estimation (Contribution 5b)

for multi-state appliances (Contribution 5d). In Section 5.7 we use the Arduino Due to test

the ability of µDisagg to run on an embedded processor in real-time (Contribution 5c).

71
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5.1 Nomenclature

There are a number of standard terms we use when reporting experimental results in our

findings tables. We now explain their meaning here.

Test Type Each test ran on the same dataset and with the same loads, but was configured

slightly differently. These different test configurations were: Discrete Denoised, Dis-

crete Noisy, Discrete Model, Continuous Noisy, and Continuous Model. Below is an

explanation of each type of configuration.

Discrete A discrete configuration used an emission matrix that was generated with

the algorithms discussed in Section 3.5.2. The emission matrix column index

was a quantized value where y 2 [0,N]. For example, if y = 5.6 then the column

index for the emission matrix would be column 56 (in dA precision).

Continuous A continuous configuration used normal distributions for emission prob-

abilities. One normal distribution per super-state was fitted, creating an emis-

sion vector. See Section 5.3 for further details.

Denoised A denoised configuration removes any noise (as defined in (4.8)) from the

aggregate reading so that the aggregate observed value y is equal to the sum

of the hidden values y(m) (in ground truth) of each load m of M loads in our

model: y =
P

M

m=1

y(m).

Noisy A noisy configuration does not remove the noise in the aggregate observed

value y defined in (4.8), nor does it try to model the noise as a load. To us,

this represents a more realistic configuration to test against. We will discuss this

more in Section 5.5.

Model A model configuration treats the noise in ground truth (as defined in (4.8))

as a load we label unmetered. A PMF is created for the unmetered load and

it is quantized into states. As with other loads, it was integrated as part of a

super-state. This is why, for this test, there was one more load compared to the

equivalent denoised or noisy test. It is harder to model noise because it can

have many more states than a real load. For our tests we needed to constrain

the amount of states to eight to maintain computational efficiency in both space

and time.
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K(M), K,M, T Variables We report on a number of model variables: K(M) is the average

number of states per load, K is the number of super-states in our model, M is the

number of loads in our model, and T is the number of readings that were disaggre-

gated per fold.

Rate Here we report the rate/speed (in seconds/sample) of µDisagg to disaggregate one

aggregate observed value y.

Unseen Here we report the number of observations, when inference ran, that resulted in a

zero-probability. This happens when inference does not find the appropriate matrix

element because an observation or transition had not been present in the training

during the building of the A and B matrices.

Noise Here we report our percent-noisy measure (%-NM) defined in (4.9).

Acc Here we report the basic accuracy measure as defined in (4.1). Although this measure

is not the best way to report accuracy, we include it because a majority of disaggre-

gation researchers use this measure and we want to show how inaccurate it can be as

compared to other accuracy measures.

Precision, Recall, F-Score Here we report our Finite State version of these normally binary

measures which we discussed in Section 4.4.3.

Est Acc Here we report the consumption estimation accuracy measure defined in (4.12).

5.2 Experimental Setup

To support our claims in Contribution 5, we chose two low-frequency datasets: AMPds [3]

and REDD [55]. Both datasets differ in terms of low-frequency sampling rates (per minute

vs per 3-seconds) and measure types (current vs apparent power). A prototype of µDisagg

was first coded in Python 3.4. We chose Python because of list manipulation capabilities

and its ease in creating rapid prototypes that are easily translated into C (at a later point).

Our prototype ran as a single threaded process and would disaggregate the specified loads

in all the readings of a given dataset. The final version was coded in C and ran on our

Precision Ammeter (Section 2.5.4) which we will discuss in Section 5.7. All tests, with the

exception of the embedded testing in Section 5.7, ran on a Mac Pro (Late 2013 model) with
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a 3.5GHz 6-core Intel Xeon E5 processor and 64GB of memory. To mitigate bias, each test

used 10-fold cross-validation.

Algorithm 5.1 shows the structure and main logic of the program used for running

tests on our disaggregator. Initially we would need to specify a list of loads we want to

disaggregate (line 1). Then, we pick an option on how to handle noise (line 2) and a way

to model emissions (line 3). We set the denoise flag based on the noise option (lines 5–8). If

we want to model noise, based on the noise option, then add a load called unmetered (lines

10–12). Then, we set the number of loads (line 13). Next, we read in the desired dataset file

(line 15) and split it into 10 partitions (line 16), one for each fold. We begin looping once

for each fold (line 17). Then, we assign the next fold’s test data (lines 18) and the training

data making sure the test data is not part of the training data (line 19). We create a PMF

for each load (line 21). Next, we quantize the PMF of each load into a set of load states and

find their peak values (line 22). Finally, we create the super-state HMM models based on

the training data, previous calculated data, and emissions option (line 24). The training, or

model building, phase is complete for this fold.

We start testing by setting the previous observation value from the first reading in the

test data (lines 26) and begin looping through each reading as a test (line 27). We then set

the current observed value from the test data (line 28). Next, we call the appropriate sparse

Viterbi algorithm based on the emissions option and return the inferred super-state (lines

29–35). We determine the state of each load from the super state (line 36) and estimate what

the observed value is (line 37). Then, we evaluate the test results against ground truth (line

38). Our final test step is to assign the current observation as the previous observation (line

39). We continue looping until all test data in all folds are processed.

5.3 Continuous Emissions

Previously we built a discrete emission matrix B[j, n] based on priors – what we call the

discrete version of our disaggregator. We had concerns that any unseen observation would

cause inaccurate predictions which would result in the return of zero-probabilities. We

wanted to see what effect the inability of handling unseen observations would have on

the accuracy of our discrete model. As such, we modified our existing super-state HMM

and sparse Viterbi algorithm to allow for continuous emissions for comparative testing

purposes. Doing so allowed unseen observations to have a non-zero probability. This
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Algorithm 5.1 TESTING-PROCEDURE :

1: load ids [‘Fridge’, ‘Oven’, ‘Heater’] # for example
2: noise ‘no’ or ‘yes’ or ‘model’ # gets one of these values
3: emissions ‘discrete’ or ‘continuous’ # gets one of these values
4:
5: denoise false
6: if noise = ‘yes’ then
7: denoise true # set to remove all noise
8: end if
9:

10: if noise = ‘model’ then
11: load ids load ids.append(‘Unmetered’) # add noise as a load
12: end if
13: M len(load ids) # the number of loads
14:
15: data load dataset(‘AMPds.csv’, denoise) # for example
16: data split(data, 10) # partition into 10-folds
17: for i = 1! 10 do
18: test data[i] # set the test data
19: train data- test # remove the test data
20:
21: (PMF, N) create pmfs(train,M,N) # defined in Section 3.5.1
22: (K,K(m), y

(m)
peak

, y
(m)
bound

) quantize pmfs(PMF) # determine load states
23: # defined in Section 3.5.2
24: (P

0

,A,B) create sshmm(train,M,N,K, K(m), y
(m)
peak

, y
(m)
bound

, emissions)
25:
26: y

0

 test[0] # the aggregate y only
27: for j = 1! len(test) do
28: y

1

 test[j] # the aggregate y only
29: if emissions = ‘discrete’ then
30: # see Algorithm 3.4
31: k DISCRETE-SPARSE-VITERBI(K,P

0

,A,B, y
0

, y
1

)
32: else
33: # see Algorithm 5.2
34: k CONTINUOUS-SPARSE-VITERBI(K,P

0

,A,B, y
0

, y
1

)
35: end if
36: s KTH-CARTESIAN(K(m), k) # see Algorithm 3.1
37: y

est

 estimate consumption(y(m)
peak

, k) # defined in (3.14)
38: eval accuracy(test[j], k, s, y

est

) # defined in Section 4.4.3
39: y

0

 y
1

40: end for
41: end for



CHAPTER 5. EXPERIMENTS 76

version we term as our continuous version.

We say that the probability of super-state S
t

at time t given an observation y
t

is dis-

tributed normally p(S
t

= j|y
t

) ⇠ N(µ,�2), where the normal (Gaussian) distribution N

is defined by mean µ and variance �2. Instead of populating our emission matrix during

model building, we now fit N by calculating the recursive mean [85]

µ
t

=
t- 1

t
µ
t-1

+
1

t
y
t

, (5.1)

and recursive variance [85]

�2

t

=
t- 1

t
�2

t-1

+
1

t- 1
(y

t

- µ
t

)2 , (5.2)

for each t 2 {0, 1, ..., T } in our priors. While µ
t

and �2

t

are intermediate values, once all

prior data has been processed, they are noted as a final µ and a final �2. We populate an

emission vector B with the tuple of final values (µ,�2). We fit one N per super-state. Our

continuous sparse Viterbi algorithm then uses the normal distribution function [86, pp. 89]

p(S
t

= j|y
t

) = g(y;µ,�2) =
1

�
p
2⇡

e-
1

2

(y-µ

�

)2 (5.3)

to calculate the emission probabilities of super-state S
t

given the observed current/power

draw y
t

at time t. Further, we can now use decimal numbers as observations. In our

discrete version we needed to convert the decimal number into an integer (e.g. 1.2A !
12dA) that would be used as a column index for our emission matrix B. There is the further

benefit of having a reduction in the amount of storage space required for B. However, this

has increased the amount of computational time needed to perform each disaggregation

(see the Rate column of test results tables).

Algorithm 5.2 is the version of our discrete sparse Viterbi algorithm (described in Sec-

tion 3.5.4) that uses continuous emissions. These posterior probabilities are stored in vector

P
t-1

as part of initialization (Algorithm 5.2, lines 1–5).

P
t-1

[j] = P
0

[j] · g(y
t-1

;B[j].µ,B[j].�2), j = 1, 2, ..., K . (5.4)
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Unlike our discrete algorithm, computation is not reduced because there are no fixed ma-

trix elements with probability of zero. We now calculate the posterior probabilities for the

current time period (the recursion step, Algorithm 5.2, lines 7–10)

P
t

[j] =
K

max

i=1

(P
t-1

[i] ·A[i, j] · g(y
t

;B[j].µ,B[j].�2)), j = 1, 2, ..., K . (5.5)

We terminate (Algorithm 5.2, line 12) to find the most likely current super-state index

k
t

= argmax(P
t

) . (5.6)

This algorithm is programmatically called the same way as our discrete version. Each time

we need to disaggregate, we use a sliding window of observations t- 1 and t.

Algorithm 5.2 CONTINUOUS-SPARSE-VITERBI(K,P
0

,A,B, y
t-1

, y
t

)

1: P
t-1

[k],P
t

[k] 0.0, k = 1, 2, ..., K # step 1: initialization
2:
3: for j = 1! K do
4: P

t-1

[j] P
0

[j] · g(y
t-1

;B[j].µ,B[j].�2)
5: end for
6:
7: for j = 1! K do # step 2: recursion
8: (i, p

a

)[] COLUMN-VECTOR(A, j)
9: P

t

[j] max(i,p
a

)(Pt-1

[i] · p
a

· g(y
t

;B[j].µ,B[j].�2))
10: end for
11:
12: return argmax(P

t

) # step 3: terminate

5.4 Load Dependency

We ran a number of correlation coefficient tests on the loads we would use for testing

in both the AMPds [3] and REDD [55] datasets. Such a discussion is usually avoided as

researchers using factorial-based models note load dependency is lost. To begin our cor-

relation tests, we needed to normalize ([0,1]) the reading, in the dataset, of each load we

wanted to test in each dataset

y
0
t

=
y
tP

T

i=1

y
i

, j 2 1, 2, ..., T , (5.7)
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where y
0
t

is the normalized value, y
t

, y
i

are the measured readings at time t, and T is the

total number of readings. We used the corrcoef() function 1 from the Python NumPy

library to calculate the correlation coefficients. Each call returns a matrix which we present

in various tables. We determine the strength of a correlation below from Table 5.1 [87].

Table 5.1: Correlation Coefficient Rule of Thumb

Positive Coefficient Negative Coefficient Strength of Relationship

0.5 to 1.0 -1.0 to -0.5 Strong
0.3 to 0.5 -0.5 to -0.3 Moderate
0.1 to 0.3 -0.3 to -0.1 Weak
0.0 to 0.1 -0.1 to 0.0 Very Weak

0.0 0.0 None

When examining AMPds, we first looked at loads we would use for accuracy tests in

Section 5.5. There is a weak correlation (0.28) between the heat pump and the HVAC sys-

tem (Table 5.4(a), page 86) which confirms our observation made earlier in Section 3.5 but

it was not as strong as we thought it might be. If we examine all the sub-metered loads in

AMPds (Table 5.5, page 87), we find other interesting load dependencies. There is a strong

correlation (0.70) between the basement plugs and lights and the entertainment equipment

(TV, DVD, etc). This would be the case because at night time the basement rec room is

used to watch TV. There is also a strong correlation (0.52) between the utility room plug

and the electronics workbench, but we are not certain why. There are a number of other

weak correlations that we have not mentioned, but may warrant further investigation for

using correlations to infer occupant activity and augment previous research we performed

on occupant activity [4, 13].

When examining REDD we ran correlation tests on the four houses we would use for

accuracy testing (House 1, 2, 3, and 6) in Section 5.6. In House 1, there is a strong correlation

(0.73) between the heater and the microwave (Table 5.4(b), page 86). House 2 and House

3 had at best very weak correlations. The highest correlation in House 2 was 0.10 between

the lights and the microwave (Table 5.4(c), page 86). The highest correlation in House 3

was also 0.10 but between the lights and the fridge (Table 5.4(d), page 86). House 6 had

a weak negative correlation (-0.21) between the fridge and the dishwasher and a weak

positive correlation (0.16) between the lights and the heater. One interesting find was in

1see http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
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House 4, where there was a strong correlation (0.81) between the air conditioning and

stove, and a moderate correlation (0.35) between the air conditioning and clothes dryer.

This would suggest the use of the stove and clothes dryer created enough heat to have the

air conditioning turn ON in the home.

The results of these load dependancy tests confirm some loads have correlation with

others. Super-states take advantage of this by having each super-state as a set of load

states. The combinatorial nature of the super-state means dependancies are preserved as

the HMM is being built. Factorial models and those that treat loads as independent HMMs

or Markov chains cannot preserve these load dependancies like a super-state HMM can.

We expect our disaggregator will have a clear advantage over other disaggregators because

we preserve load dependancies. In Section 5.6 we will test our super-state HMM against

the published results of two other factorial models.

5.5 Testing Deferrable Loads

Our previous discussions around deferrable actions (Section 1.1) had large appliances, such

as a clothes dryer, run when the cost of electricity was cheaper, called off-peak hours. We

argued it is important to be able to disaggregate these types of loads. This should be the

focus of a disaggregator because the deferral of running such loads has a direct benefit to

the occupants (saving money) and may have a direct benefit to the power grid as a whole.

Deferring large loads from running during peak times of usage can ensure power grid

stability and avoid grid brownouts. This idea is often discussed as peak shaving [88]. The

benefit of having a disaggregator only disaggregate deferrable loads is: (a) they can be

more easily identified due to their large consumption – better accuracy; and (b) they can

run faster as there are less loads to disaggregate. However, the disaggregator must be ro-

bust enough to handle a large percentage of noise. This is because the noise would contain

many other loads that would be running in the house. Contrarily, robustness against noise

has a long term benefit because the load profile/makeup of a house could change without

affecting the disaggregator’s ability to identify these deferrable loads. We are very much

interested in evaluating how µDisagg would perform in a situation such as this.

To test the accuracies for disaggregating deferrable loads we used AMPds [3]. The

deferrable loads we chose were the clothes dryer, the dishwasher, the HVAC fan, the heat

pump, and the kitchen wall oven. We ran all five test types (Discrete Denoised, Discrete
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Noisy, Discrete Model, Continuous Noisy, and Continuous Model) on the entire one year

worth of data (524,544 readings). The readings within APMds do not contain errors so there

was no need to clean or convert the data. We ran tests using per minute sampling (minute

tests) and per hour sampling (hour tests). For the per minute sampling tests we used

Ampere measurements (at dA or 0.1 precision). When summarizing, we ignored reporting

numbers for the Discrete Denoised tests as they did not represent a realistic scenario. We

reported Discrete Denoised in the results tables for comparison as to what the ideal result

would be.

Table 5.6 (page 88) shows the overall results for our minute tests. All five test types

scored very high with the lowest score being 91.6% for recall for the Continuous Model.

Looking at the specific load results for the noisy and model tests in Table 5.7 (page 88),

we noticed that in all four tests the accuracy results for the dishwasher scored very low,

while the other loads scored quite high. This is mainly due to having two of its load states

(at peaks 0.4A and 1.2A) similar to other loads (2 loads and 3 loads respectively). In the

model tests, the unmetered load scored low because we restricted the amount of states

to a maximum of 8. We compared the percentage of total consumption for each load of

the noisy and model tests with that of ground truth (Figure 5.2, page 89). In this test, the

discrete test faired better than the continuous tests.

We also wanted to test how well our disaggregator would disaggregate very low-

frequency sampling data – the hour tests. In these tests we used Watt-hour measurements

(at daWh or Wh÷10 precision). We accumulated the Watt-hours for each hour over the

entire year for a total of 17,520 readings. Table 5.8 (page 90) shows the overall results of the

hour tests. The Discrete Noisy test performed with high accuracy (>85%) followed closely

by the Discrete Model test. The continuous test did not fair as well scoring in the mid-70%.

Examining the load specific scores in Table 5.9 (page 90), we noticed that the dishwasher,

again, scored low. However, we also found the oven scored even lower often having a FS

f-score of 0%. There were misclassifications that occurred because of the high level of noise

and the infrequent, nonuniform use of the oven. We were surprised our disaggregator

scored as well as it did after reading Kolter’s [52] published results for hourly disaggre-

gation. His discriminative disaggregator achieved an estimation accuracy of 55.1% which

is 20.4% lower than our worst performing test, Continuous Model. Kolter used a different

dataset (Plugwise) which contained a large number of houses, so it is hard to do a direct

comparison of his results versus ours.
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5.6 Comparing Disaggregators

To compare the accuracy of µDisagg to that of others [55,60] we used the REDD dataset [55]

(a smaller dataset compared to AMPds, but data sampled every 3 seconds) and used the

same estimation accuracy measure defined in (4.12). We wanted to compare our results

against the Kolter 2011 [55] results and the Johnson 2013 [60] results. Kolter and John-

son [55] initially reported accuracies on Houses 1, 2, 3, 4, and 6 using a disaggregator that

used supervised learning. Johnson et al. [60] reported accuracies on Houses 1, 2, 3, and 6

using a disaggregator that they claimed used unsupervised learning. However, their claim

of unsupervised learning was incorrect. They used a supervised learning solution because

they were using labelled data to building the appliance models. This is also the opinion

of Parson [68]. The REDD dataset has high-frequency and a low-frequency sampling data.

We chose to use the low-frequency sampling data which was in apparent power measure-

ments. The whole-house aggregate power meter sampled at 1Hz (per second), opposed

to the load sub-meters that sampled a 1

3

Hz (3-second intervals). This meant we needed

to clean and convert the data for our tests. For our tests we down sampled the aggregate

data from 1Hz to 1

3

Hz by discarding the between readings after matching the timestamps.

There was the additional problem where the timestamps in some of the readings were out

of sync because two different metering systems were used (one for aggregate and one for

loads). To correct mismatches we had our conversion program scan the aggregate data

records forward and backward until the aggregate reading matched the sum of all the load

readings. There were a few instances where there was negative noise, as defined in (4.8). To

correct this, we added the difference to the aggregate reading so that the noise cancelation

would read zero.

Table 5.2: Comparing REDD Accuracy Estimations with Other Published Results

REDD
Kolter

2011 [55]
Johnson
2013 [60]

Discrete
Denoised

Discrete
Noisy

Discrete
Model

Continuous
Noisy

Continuous
Model

House 1 46.6% 82.1% 99.5% 95.6% 99.3% 85.7% 89.0%
House 2 50.8% 84.8% 99.7% 94.8% 99.0% 90.2% 89.9%
House 3 33.3% 81.5% 98.4% 90.6% 97.5% 83.9% 85.1%
House 6 55.7% 77.7% 97.5% 98.4% 99.7% 98.1% 98.4%
Average 46.6% 81.5% 98.8% 94.9% 98.9% 89.5% 90.6%
Gain wrt. [55] —- +34.9% +52.2% +48.3% +52.3% +42.9% +44.0%
Gain wrt. [60] -34.9% —- +17.3% +13.3% +17.3% +7.9% +9.1%



CHAPTER 5. EXPERIMENTS 82

We used the same five tests previously described in this chapter. We selected the same

five loads to disaggregate as Johnson did: refrigerator, lighting, dishwasher, microwave,

and furnace. We compared our results with the other two in Table 5.2. Note the other

two papers did not report load specific accuracies, so we cannot compare those. While the

Johnson 2013 results were significantly better than the Kolter 2011 results, the results from

all 5 µDisagg tests were significantly better than the Johnson 2013 results. Our discrete

noisy results were better than Johnson 2013 by 13.3%, and better than Kolter 2011 by 48.3%.

We report the other overall metrics and accuracy measures for House 1 in Table 5.10

(page 91), House 2 in Table 5.11 (page 91), House 3 in Table 5.12 (page 91), House 4 in

Table 5.13 (page 92), House 5 in Table 5.14 (page 92), and House 6 in Table 5.15 (page 92).

We clearly show that the majority of accuracy measures score high, with a few exceptions.

The Discrete Noisy test for House 1, 2, and 3 has FS f-scores below 80%: 78.1%, 77.9%, and

65.0% respectively. The Continuous Noisy test for House 6 had an FS f-score of 72.6%. The

four tested (excluding denoised) performed quite well with large amounts of noise. The

Discrete Model test on House 1 had the largest amount of super-states at 20,480.

5.7 Testing Real-Time Embedded

Our prototype µDisagg, originally written in Python, was converted and optimized in C.

A python script was created that would model data generated from a dataset and convert

it to C data structures. As previously discussed in Section 2.5.4, we developed a hardware

prototype ammeter that would monitor the home’s current draw and then run µDisagg.

Our ammeter uses the Arduino Due 2 as the embedded platform for µDisagg to execute

on. The Arduino Due has an Arm Cortex-M3 processor which is a 32-bit ARM core micro-

controller with a clock speed of 84Mhz. For memory, there is 96kB of SRAM and 512kB of

flash memory. Flash memory is used to store the program image (in our case µDisagg). At

the time of writing this thesis, the embedded processor (Atmel SAM3X8E) could be pur-

chased for USD$12.00, which contains the essential RAM and flash needed to run µDisagg.

Table 5.3 reports metrics that support our claims in Contribution 5c. The Build Time
column reports the total amount of time (in seconds) it took to build the C data structures.

The Image Size column reports the binary image size (in kilobytes) of µDisagg. The %

2see http://arduino.cc/en/Main/arduinoBoardDue
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of ROM column reports the percentage of flash memory used to store µDisagg on the

Arduino Due. The Burn Time column reports the total amount of time (minutes:seconds)

it took to upload and program the Arduino Due with the µDisagg image. The Disagg
Rate column reports the elapsed time (in microseconds) for µDisagg to disaggregate one

aggregate reading.

Table 5.3: AMPds Tests from Section 5.5 Used for Running µDisagg on an Arduino Due

Test Type Loads Build Time Image Size % of ROM Burn Time Disagg Rate

Discrete Denoised 5 23.9s 100.6kB 19% 0:44 10µs
Discrete Noisy 5 23.7s 162.4kB 30% 1:07 20µs
Discrete Model 6 26.5s 794.0kB —- —- —-
Continuous Noisy 5 27.4s 87.0kB 16% 0:39 440µs
Continuous Model 6 29.5s 494.8kB 94% 3:38 >60s

We could not perform the Discrete Model test because the image size was larger than

the available flash memory by about 282kB. We could not complete the Continuous Model

test because it never returned a result – taking too long to execute. Once the processing

time exceeded 1 minute we stopped the test as it made no sense to have the execution

time exceed the sampling rate which was per minute. For the other three tests (Discrete

Denoised, Discrete Noisy, and Continuous Noisy), we can see µDisagg is able to perform

disaggregation on a low cost, commodity, embedded processor in real-time. We also ob-

served the processing time for discrete models is far less than continuous models (22⇥)

but at the cost of requiring more storage (1.9⇥). When µDisagg was complied and ran on

our Mac workstation, all five tests have a rate under 1 millisecond. It is interesting to note

that in C, model space was in the 100s of kB, and in Python, model space was usually in

the 100s of MB and in some cases 1–2 GB – we anecdotally noted about 2000–3000⇥ more

space was required. We concluded modelling noise is not the best option for an embedded

environment when a high amount of states is used. In our test, modelling noise produced

a load with eight states. The amount of model data added by modelling noise exceeds the

limitations of embedded processors. We would recommend constraining the amount of

states per load to 4 or 5.
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5.8 Analysis and Review

We have shown, through experimentation, all our claims in Contribution 5 have been met.

Zeifman [38] previously identified six key requirements he believed needed to be met in

order for load disaggregation to be solved. The six requirements are: feature selection,

accuracy, no training, near real-time capabilities, scalability, and various appliance types.

We review how well we have met these requirements.

Feature Selection Feature selection constrains the measurements that suitable disaggre-

gators use to those measured by a typical smart meters: voltage, current, frequency,

apparent power, and apparent energy. There is also a restriction in sampling fre-

quency as smart meters only report readings at a low-frequency. µDisagg has met

this requirement with the ability to use different measurements reported by the smart

meter and low-frequency sampling. We have shown that µDisagg can disaggregate

accurately at even lower sampling frequencies: per minute and per hour.

Accuracy Accuracy requires suitable disaggregators to have a minimal accuracy measure

score of 80%. In Figure 5.1, µDisagg has met this requirement in overall accuracy

measure for the majority of tests ran.

No Training No training constrains suitable disaggregators to those that do “not involve

significant occupant efforts” [38] to train and accurately disaggregate loads. In the

development of µDisagg we have tried to minimize the involvement of occupants.

We have restricted the training effort needed to just initial model building without

pre-tuning.

Near Real-Time Near real-time capabilities means suitable disaggregators must run on-

line and respond to events as they happen. This means the algorithm must be robust

and efficient. µDisagg has met this requirement and can disaggregate in under 1

millisecond.

Scalability Scalability constrains suitable disaggregators to those that do not require ad-

ditional processing time and/or hardware to account for the identification of new

appliances. This is still very much an open research question and µDisagg currently

cannot do this. However, it can disaggregate accurately with high levels of noise so as

new appliances are added or removed this will have minimal impact on the current
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Figure 5.1: Compare tests scores for FS f-score and estimation accuracies.

appliances µDisagg is disaggregating (assuming those appliances do not change).

One observation is the house used to create AMPds did not have any major deferrable

load changes in the 10 years, after a major renovation was done.

Various Appliance Types Various appliance types 3 must be handled/detected by the dis-

aggregators. To simplify things, µDisagg only uses one appliance type, multi-state

(or finite state). Simple ON/OFF and constantly on are simply special cases of multi-

state. Continuously variable appliances are usually small devices (e.g. Dremel tool

with variable speed motor) that do not constitute a deferrable load. For larger appli-

ances such as a front load washer, with variable speed drum, we create a state for this

operation. Consumption estimation is based on the peak y
(m)
peak

which seems to be

sufficient for estimation purposes. However, we do not directly address continuously

variable appliances with complex variable signatures.

In our final chapter we conclude our thesis with a discussion on significance, limitations,

and future directions.

3e.g. Hart’s [17] four appliance types: simple on/off, finite state, constantly on, and continuously variable
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Table 5.4: Correlation Coefficient Amongst Loads for Each Test as Discussed in Section 5.4

(a) Correlation Coefficient for Loads in AMPds

Dryer Dishwasher HVAC Heat Pump Oven

Dryer 1.00 0.02 -0.01 -0.00 0.00
Dishwasher 0.02 1.00 0.00 -0.01 0.01
HVAC -0.01 0.00 1.00 0.28 -0.01
Heat Pump -0.00 -0.01 0.28 1.00 -0.01
Oven 0.00 0.01 -0.01 -0.01 1.00

(b) Correlation Coefficient for Loads in REDD House 1

Fridge Dishwasher Lights Microwave Heater

Fridge 1.00 0.01 0.02 0.04 0.02
Dishwasher 0.01 1.00 0.03 -0.02 -0.02
Lights 0.02 0.03 1.00 0.12 0.13
Microwave 0.04 -0.02 0.12 1.00 0.73
Heater 0.02 -0.02 0.13 0.73 1.00

(c) Correlation Coefficient for Loads in REDD House 2

Lights Microwave Fridge Dishwasher

Lights 1.00 0.10 0.04 -0.01
Microwave 0.10 1.00 0.02 -0.01
Fridge 0.04 0.02 1.00 -0.01
Dishwasher -0.01 -0.01 -0.01 1.00

(d) Correlation Coefficient for Loads in REDD House 3

Lights Fridge Dishwasher Microwave

Lights 1.00 0.10 0.05 0.06
Fridge 0.10 1.00 0.01 0.05
Dishwasher 0.05 0.01 1.00 -0.00
Microwave 0.06 0.05 -0.00 1.00

(e) Correlation Coefficient for Loads in REDD House 6

Fridge Dishwasher Heater Lights

Fridge 1.00 -0.21 0.07 -0.01
Dishwasher -0.21 1.00 0.00 0.02
Heater 0.07 0.00 1.00 0.16
Lights -0.01 0.02 0.16 1.00
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CONCLUSIONS

Our disaggregator was designed to run in real-time on an embedded processor using low-

frequency sampling data in an effort to show load disaggregation is indeed a viable method

for enabling occupants to understand how their home consumes energy. This understand-

ing would allow occupants to make intelligent, informed decisions on how they conserve

the use of energy, which by all accounts is a very personal and dynamic decision making

process. Personal and dynamic because the goals of the occupants involve many factors

such as: home characteristics, occupant comfort levels, and budgetary constraints (to name

a few).

In this thesis, we have presented work that makes contributions to many aspects of

disaggregation research. Some, like AMPds (Section 4.4.1) go beyond contributing to dis-

aggregation research; they contribute to other fields of research such as: computational

sustainability, energy modelling, smart homes, eco-feedback, and ambient assisted living.

Our main contribution is the original work of a new disaggregation algorithm called the

sparse Viterbi algorithm. The sparse Viterbi algorithm uses efficient sparse matrix pro-

cessing on a super-state hidden Markov model with a large number of states. First, we

conclude with a synthesis of the varying aspects raised throughout our thesis and discuss

their significance (Section 6.1). Second, we discuss the limitations of the work we have

presented (Section 6.2), which provides opportunity for our third and final discussion of

future directions (Section 6.3).
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6.1 Significance

Oft-times, the point of realization and convergence comes from the many investigations

and experiments conducted to expand one’s understanding. In this thesis, we presented

a number of investigations which converged to our final disaggregator design, µDisagg.

Each investigation we performed built on the knowledge of the previous investigations.

The design of µDisagg was birthed through inclusive examination of these investigations,

which included a healthy dose of retrospection.

Inspired by philanthropic and humanitarian means, we discussed social-economic is-

sues around energy conservation. We asked ourselves a number of questions. What if the

occupant does not have a comupter or access to the Internet? What if the occupant cannot

afford it? Does this mean they do not have a right to take part in energy conservation?

Do they not have the right to access information that can help them conserve and save

money? As the cost of electricity rises, how would low-income families cope without the

tools needed to help conserve energy? While our research is not to answer these questions,

these questions set our frame of mind and drive the goals of our research. To us this means

our disaggregator needs to be able to disaggregate on an embedded processor and run in

real-time in the home. In response, we developed a Consumer Bill of Rights for Energy

Conservation (Figure 1.3) and designed a new appliance label standard (Section 2.2 and

Figure 2.2) that would motivate the need for disaggregation as a tool for everyone to use.

Power utility companies are in a conflict of interest trying to provide tools that help

occupants conserve energy. This conflict stems from the fact that utility companies have an

objective (and an obligation to their shareholders) to make money. Providing tools that con-

serve energy and help occupants save money would mean that utility companies would

be making less money – an action contrary to these objectives and obligations. Given that

it may be up to the occupants to proactively participate in energy conservation, the tools

provided need to be safe and trustworthy. Safety limited the types of measurements a dis-

aggregator could use to Amperes – it is not safe to measure voltage to compute the power

measurement. Trust can be achieved by providing an open source solution and for that

solution to mitigate privacy concerns. An open source solution incentivizes occupants to

take control of their energy conservation goals with the trust of using an open hardware

and software platform. This, in effect, limited us to using algorithms that run online in

an embedded environment that is computationally constrained by time and space. This
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means our disaggregator must use models that are space efficient, yet rich in information.

Additionally, our disaggregator must use inference algorithms that are time efficient, yet

powerful enough to enumerate over all possible super-states without approximation. Our

investigations into measurement fluctuations, load state switching, and metering hardware

were proof of the viability of providing an open hardware platform.

We now have an open hardware platform (containing an inexpensive commodity em-

bedded microcontroller) to run our disaggregator – the origin for the name µDisagg. The

use of empirical PMFs and a state quantization algorithm means we could determine the

states of a load given prior knowledge, we could also constrain the number of states (if

desired). Conventional HMMs, where the super-states are enumerations of the combi-

nations of different load states, were easily dismissed for their exponential complexity

problems. However, when we investigated sparsity we found the matrices in a conven-

tional HMM were so sparse that simple matrix compression would allow for a very large

amount of super-states. The computational space was significantly reduced. By compress-

ing the matrices in column format there was the additional benefit of having an inference

algorithm only calculate non-zero probabilities. This significantly reduced the amount of

computational time needed. The use of empirical PMFs and a conventional HMM allowed

our super-state HMM to be built algorithmically. There is no need for manual config-

urations/interventions or pre-tuning, unlike the factorial models we have reviewed. In

addition to this, unlike factorial models, our model preserves load dependencies and can

perform exact inference resulting in better accuracies.

There has been a lack of available testing data, although this has improved recently. By

creating our own dataset (AMPds) we were able to control the quality of data, the types of

measurements collected, and the sampling frequency (Section 4.4.1). The release of AMPds

to the public has given other researchers the means to reproduce our work and verify our

findings [3]. AMPds has also contributed to the community, as a whole, by providing our

data for other researchers to use in their experimentations. By collecting our own data,

on a house which we have intrinsic knowledge of, we gained unprecedented insights into

the understanding of the data collected. Additional, we did evaluated µDisagg on another

researcher’s dataset. These insights guided us in development of µDisagg and aided in the

analysis of our experimental results. For instance, having knowledge about the house that

is beyond the dataset gave us the intuition about load dependancy.
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Measuring accuracy is an area without an accepted standard for disaggregation re-

search even though is very important to prove the effectiveness of a disaggregator. With

our insights in data, we proposed a comprehensive guide for reporting how tests were run

and what accuracy metrics are the best to use. By doing so, we were better able to perform

diagnostics that allows us to identify problems with our disaggregator. For example, we

performed a number of revisions on our state quantization algorithm, based on the dif-

ference in classification accuracies versus estimation accuracies. The subsequent changes

to parts of our algorithm improved our accuracy results to what we have reported in this

thesis. Our proposed comprehensive guide also contributes to the disaggregation research

community as a whole, providing researchers with an improved way to report experimen-

tal setup and results – further contributing to reproducibility.

Our experiments are the result of a culmination of our previous discussions. We were

able to setup specific tests with a pragmatic approach. These tests demonstrated how

µDisagg could perform with the ultimate goal of energy conservation in mind. Unlike

many researchers, we compared our disaggregator results with other published works.

We ran tests on the entire dataset, not a hand-picked subset. Our experiments also demon-

strated how µDisagg performed on real house data and in an embedded environment. This

is important because disaggregators will eventually run in the real world as a product.

The hope of any researcher who devotes their time and energy to the research of load

disaggregation does so with the motivation of providing solutions that can aid in energy

conservation. However, this point is rather lost when said researchers design algorithms

that require the use of Matlab on a workstation. Yes, there is the argument that says we

can run intensive algorithms in the cloud, but such a proposition begs those occupants,

who want to participate in energy conservation, to trust a company with the privacy of

their deeply personal and private data. This is not a viable solution for those who do not

want to sell their privacy. A holistic solution deserves the trust of its users and that means

a device that runs load disaggregation from within the home on an embedded system

where the consumption data stays in the home under the ownership of its occupants. Our

research provides a number of significant contributions that are applied rather than being

theoretical in nature. Our goal has always been to have research contribute to practical

solutions that can see load disaggregation being used in a private and secure setting within

a device that runs within a home and consumes as little energy as possible. In this thesis,

we have designed an algorithm that can do this. This algorithm can run on inexpensive
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commodity embedded processors in real-time. This means there is the potential for an

inexpensive, open-source product 1 that can run within the home which occupants can

trust. To us this is significant.

6.2 Limitations

Although we believe there is significance in our research, there are a some of limitations

to our work that do exist. In Section 5.8 we compared µDisagg to Zeifman’s [38] six key

requirements for disaggregation to be solved. We have confidently met four of them: fea-

ture selection, accuracy, near real-time capabilities, and various appliance types. The two

we have not confidently met are no training and scalability. The idea of no training may

be better rephrased as minimal setup which could be handled in two ways: the collection

of priors or the active tuning of general load models. In this thesis, we have chosen the

collection of priors which provides more accurate results from the start. Active tuning can

only provide accurate results once the general models are tuned properly to the specific

loads in the house which could take an arbitrary amount of time. How will the occupants

know when this active tuning period has completed and that the disaggregation results

can now be trusted as accurate?

Zeifman’s idea of scalability is very much still an open research question. It is difficult

to identify new loads without devoting some computational time to the act of finding them.

This also assumes we want to disaggregate every load a house has. Disaggregation is

very much a problem that is computationally exponential in both time and space. This

means we can mitigate some effects of exponentiality with different strategies, such as our

sparsity optimization or the use of factorial models. We need to disaggregate loads that will

allow for the end goal of energy conservation and design robust algorithms that handle

large amounts of noise (unmetered loads) like µDisagg can. If, for instance, an occupant

wants to disaggregate lights, then it may be better to use home automation systems to

do this. Not only can they tell the occupant whether the light are ON or OFF, that also

gives the occupant remote control over them. New LED lights are being manufactured

that self monitor their energy consumption. Automation is a far more advanced method

for handling lights. In the future, a disaggregator could use this information to denoise the

1which will soon be released, see http://udisagg.com and https://github.com/smakonin/uDisagg
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whole-house reading and provide more accurate disaggregation results.

In Chapter 5 we discussed encountering observations that were not represented in our

model due to them not being represented in priors. Using discrete emissions caused le-

gitimate concerns about encountering these unseen observations. When this happens, it

causes inaccurate results. If we move to continuous emissions these concerns are allevi-

ated, but at the cost of computational time. All the efficiencies gained from sparsity in an

emissions matrix are gone. With continuous emissions, each super-state in the emission

vector needs to be processed, whereas with the discrete model only those with non-zero

probability were processed. So is model stability worth the sacrifice of increased computa-

tional time? If we want to generalize one model over many houses, then yes. However, if

we are only interested in a single house and we have enough data, then no. If we have the

data we should make use of it.

One of our main goals was to achieve high accuracy scores. We believe disaggregators

with active tuning (unsupervised learning) may not work best for occupants. It is our

opinion the disaggregator would take too long to learn what loads are in a house. This

could cause occupants to lose confidence in the disaggregator’s ability to work properly.

However, these problems provide direction and motivation for future work. One thing to

note, the house used for AMPds has not had any major appliances/loads change since its

renovation in 2005 (now nearly 10 years). This would mean only a one-time calibration of

µDisagg would be needed.

µDisagg can disaggregate a model with a large amount of super-states. However, there

is still the exponential limitation in time and space. We have only pushed back the ex-

ponential problem through optimization, but have we pushed it back far enough? No, if

you want to try to disaggregate every load in a home. Yes, if you want to disaggregate

deferrable loads that affect the amount owing on a power utility bill. We believe the main

goal for load disaggregation is to help occupants conserve energy through smarter use of

loads that consume a lot of energy. For example, occupants running large consuming de-

ferrable loads when the per kWh is low, instead of when it is high, would see a savings on

their power utility bill. Nonetheless, it is still valuable to investigate other ways to mitigate

exponential limitations so more loads could be disaggregated.
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6.3 Future

Our work provides a solid foundation for continuing research in a number of different

areas. One of the high priority items we would like to look at is active tuning, where a

general model can be tuned to a specific house. This would address the limitations we

described in the previous section. As we discussed earlier, Parson [68] has begun to look

at this with the disaggregation of fridges and freezers. We believe there are a number

of different approaches that need to be explored. For instance, exploring different ways

to perform the distribution curve fitting of multi-state loads. Additionally, active tuning

needs to be studied, using a variety of different load types and datasets. Active tuning can

also be seen as unsupervised learning, if the general load models were not derived from

the datasets used for testing.

The use of state durations is also an area we would like to further investigate. State

durations represent the probability that a load will stay in a given state for a given amount

of time. This could help improve the classification of loads that operate with similar current

or power draws by adding further uniqueness. We initially performed some experiments

but were unable to get any useful results. There were a number of super-states that had

duration lengths but these duration lengths were not uniform. We attempted to use an

explicit duration model by calculating the mean duration of the super-state. This only

decreased accuracy testing results by 10%–50%, depending on the load. This may be due

to the use of super-states. State duration at the load state level might work best.

The idea of multi-fuel loads needs to be explored. Multi-fuel loads consume more than

one type of resource. For example, an instant hot water tank can consume cold water

to make hot water, natural gas to heat the water, and electricity to power the onboard

system and ignite the gas flame. This type of disaggregation would further help in the

classification of loads and may be an alternative to using state durations.

Interfacing with other common household sensors is an area often discussed but rarely

investigated. There are two important sensors in the home in addition to the smart meter:

the security system, and the thermostat or HVAC Systems. Most homes have these two

sensors and they can provide invaluable sensor data that can augment power signal data.

We believe having the three sensors working in conjunction can provide for dynamic and

adaptive home automation.
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Higher-level disaggregation, at a neighbourhood-level, is of interest. Being able to dis-

aggregate one house from another is important to understanding how energy is consumed

within a neighbourhood. Benefits, such as predicting energy consumption, can allow fore-

casting and grid brownout avoidance. Other benefits can be realized such as electricity

theft and inefficiencies due to equipment failure without the need of installing a vast num-

ber of sensors. It is important to note that forecasting can also be at the home-level allow-

ing occupants to better time when deferrable loads can run avoiding running during peak

hours when power costs more, and in some cases that could be automated.

Occupant engagement (including automation) is an area becoming increasingly im-

portant to study. Measuring the effectiveness of supplying disaggregation information to

occupants and how that information is conveyed needs to be studied. Bartram has done

extensive work on occupant-home interaction by investigating and designing a framework

for such devices [89]. Bartram has continued to look at issues affecting the ability of home-

owners to conserve energy [90, 91]. Her research reiterates the difficulties for systems to

communicate to occupants how their house is performing. There is even a question as to

what data needs to be communicated, on what medium, and in what form. This could

results in the occupants losing interest in using tools to help with conservation efforts [92].

Part of making this technology relevant is the study of how automation can help occupant

perform tasks automatically with being too intrusive [11].

6.4 Closure

In spite of the proactive discounting of a model/algorithm because of its theoretical limi-

tations, promising models/algorithms often get overlooked or simply argued away. While

the theoretical limitation of exponentiality remains, through the deep analysis of data,

modifications can be made to these models and algorithms that allow for use in practice.

We have demonstrated this through the design of our super-state HMM and sparse Viterbi

algorithm. In addition to this contribution, we have also contributed to the research com-

munity, as a whole, through the release of a dataset and the proposal of a unified approach

to accuracy reporting. More importantly, if µDisagg was a product installed in our studio

suite example (Section 1.2), as with any home, the occupant would be able to understand

how her home consumes energy, how she can save money, and how she could help the

environment.
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