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ABSTRACT Energy consumption in buildings has steadily increased. Buildings consume more energy than
necessary due to suboptimal design and operation. Apart from retro-fitting, not much can be done with the
design of the existing building, but the operation of the building can be improved. Ignoring or failing to fix
the faults can lead to problems like the higher cost in excess energy usage or premature component failure.
At the same time understanding, identifying, and addressing abnormal energy consumption in buildings
can lead to energy savings and detection of faulty appliances. This paper investigates two key challenges
found in energy anomaly detection research: 1) the lack of labeled ground truth and 2) the lack of consistent
performance accuracy metrics. In the first challenge, labeled ground truth is imperative for training and
benchmarking algorithms to detect anomalies. In the second challenge, consistent performance accuracy
metrics are crucial to quantifying how well algorithms perform against each other. There exists no publicly
available energy consumption dataset with labeled anomaly events. Therefore, we propose two approaches
that help in the automatic annotation of the ground truth data from publicly available datasets: a statistical
approach for short-term data and a piecewise linear regression method for long-term data. We demonstrate
these approaches using two publicly available datasets called Dataport (Pecan Street) and HUE. Using
different existing accuracy metrics, we run a series of experiments on anomaly detection algorithms and
discuss what metrics can be best used for consistent accuracy testing amongst researchers. In addition, while
providing the source code, we also release an anomaly annotated dataset produced by this source code.

INDEX TERMS Abnormal energy consumption, accuracy metrics, anomaly detection, baseline generation,
ground truth annotation, performance evaluation.

I. INTRODUCTION
Commercial and residential buildings together consume a
significant fraction of the total energy use. In the USA, this
fraction was as high as 41% [1] while in India it was 37% [2]
in 2016. Electricity powers our heating and cooling systems,
our ovens and stoves, lighting, and our refrigerators and
freezers within these buildings. Any appliance or equipment
in disrepair, while operating, can lead to high energy costs.

Studies done by the U.S. Environmental Protection
Agency (EPA) suggest that buildings waste an average
of 30% of the energy they consume [3]. A 2012 analysis done
by Lawrence Livermore National Laboratory (LLNL) sug-
gested the USA is only 39% energy efficient [4]. Strategies to
help increase the energy efficiency in buildings are needed,
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especially in the case of older buildings where appliances
have a higher likelihood of failing.

One strategy, anomaly detection, is to identify appli-
ances in a state of disrepair or used improperly. Identifying
these types of anomalies can create alerts to either repair
an appliance or to suggest a more optimal use. Anomaly
detection, also referred to as outlier detection, deals with find-
ing patterns in the signal that are abnormal, unexpected, or
interesting.

A. DEFINING ANOMALIES
An anomaly can be defined in several different ways and
there are many different types of anomalies. For example,
an anomaly can be vacation days [5] because these are
days with low total consumption as compared to typical,
non-vacation days. Power utilities can define an anomaly as
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unexpected power consumption that results in a customer
contacting customer service to complain.

The textbook definition of an outlier as defined by
Harkins [6] is as follows, ‘‘An outlier is an observation
that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism.’’
Anomaly detection is widely used in different applications
domains like credit card fraud detection in banking and
finance, insurance or health care, telecommunications [7],
intrusion detection in cyber security [8], [9], sensor net-
works [10], military surveillance, discovering criminal
behavior, to name a few. Chandola et al. [11] presents a
comprehensive review of anomaly detection techniques in
general, whereas Sodemann et al. [12] reviews techniques
used for outlier detection in automated surveillance. In this
paper, our focus is on detection of anomalous power con-
sumption in residential buildings.

The energy consumption can be labelled as anomalous
or non-anomalous only when it is compared with historical
data. Anomalies are broadly classified into three types: point
anomalies, collective anomalies, and contextual anomalies.

1) POINT ANOMALY
When an individual observation is considered anomalous
with respect to the rest of the data.

2) SEQUENTIAL OR COLLECTIVE ANOMALY
When a sequence of observations are anomalous with respect
to the rest of the data.

3) CONTEXTUAL ANOMALY
When a observation is considered normal with respect to one
context but not in another context. For example, consumption
behaviour on weekdays versus weekends.

Power utility companies can define anomalies as calls
into customer service where customers report their bills
with unexpectedly high consumption charges. Some exam-
ples include an appliance left on by mistake, a compres-
sor failure in a fridge, a basement renter using different
appliances (e.g., plug-in heater), the purchase and usage of
a new appliance, guests visiting for a long period of time
(holiday season), and having the thermostat set-points too
low/high as seasons change. Abnormal energy consumption
pattern could also imply a malicious activity like energy
theft [13].

B. CHALLENGES WITH ANOMALY DETECTION
Anomaly detection poses several different challenges that can
be domain specific. For the problem of detecting anomalies
in energy usage there are several such challenges includ-
ing: no clear definition of normal vs abnormal, imprecise
boundaries between normal and abnormal behaviour, lack of
ground truth, lack of a unified metric used for performance
evaluation, and evolving normal behaviour of the data [11].

One of the most significant barriers to design and test
anomaly detection algorithms is the lack of labelled ground

truth data. Metadata that labels the occurrences of anomalies
(and their type) in datasets simply does not exist and creating
such datasets is onerous and expensive. Therefore, we will
present an alternative way to test the accuracy of anomaly
detection algorithms using a basic statistical approach that
gives us the anomaly scores at hour-level and day-level.

Additionally, from a review of anomaly detection algo-
rithms [14]–[16], we have found there is no consistent way to
measure the accuracy of these algorithms. In order to compare
one algorithm against another there must be a standard set
of metrics used to measure and report the accuracy results.
In this work, we review and compare the metrics used to mea-
sure the accuracy of various anomaly detection algorithms
using an automatically generated baseline.

C. PAPER CONTRIBUTIONS
As we mentioned above, the lack of ground truth has ham-
pered the development of advanced algorithms as there is no
clear way of testing their performance accuracy. To address
the challenges faced by testing anomaly detection algorithms
our paper provides:

1) two novel methods to generate labelled (i.e., ground
truth) data for abnormal energy consumption in build-
ings for both short-range and long-range data;

2) the source code used to generate labelled data in a
standard way;

3) a publicly available dataset of anomalies found in our
experiments, so researchers can use this data directly;

4) a comprehensive review of all the different accuracy
measures used; and

5) a framework and discussion on how accuracy methods
work when compared to each other and what perfor-
mance metrics to use.

There is a lack of publicly available anomaly dataset for
ground truth testing – why use an algorithmic method to
label anomalies? We could invite a group of domain experts
to manually label existing datasets; however, this would be
expensive, time consuming, andwould not guarantee accurate
ground truth. The manual labelling of anomalies is highly
subjective and there would most likely be disagreement
amongst the knowledge experts. Having an algorithmic way
of labelling anomalies would provide dataset that can be used
for performance testing in a timely and consistent way.

All this creates new insight as to how we can develop algo-
rithms that detect anomalies and measure their performance.

D. PAPER ORGANIZATION
The remainder of the paper is organized as follows. Rel-
evant literature is reviewed in the section II. Proposed
techniques used to annotate anomalous and non-anomalous
events using short-term data and long-term data are presented
in section III. The description of datasets used in our work and
evaluation of different performance accuracy metrics used in
existing works can be found in section IV. Finally, the results
and concluding remarks are presented in sections V and VI
respectively.
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II. LITERATURE REVIEW
A. ANOMALY DETECTION IN BUILDING ENERGY
CONSUMPTION
Anomalies are often considered as noise or error but theymay
contain some important information which, on rectification,
could lead to better energy utilization [17]. The research com-
munity has addressed the detection of abnormal energy con-
sumption in several ways. An extensive review of techniques
using machine learning and statistical methods for general
outlier detection has been provided by [18]–[20]. We give
a brief review of methods used specifically for identifying
abnormal energy consumption in buildings.

1) STATISTICAL METHODS
Statistical anomaly detection techniques use statistical prop-
erties of the normal activities to build norm profile and
employ statistical tests to determine the deviation of the
observed data from the norm profile [21]. These methods are
based on the assumption of known underlying distribution of
observations [6], [22]. Any observation that deviates from the
model assumption is flagged as an anomaly.

a: PROXIMITY BASED METHODS
These methods compute the neighbourhood for each data
point using a distance metric. An analysis of the neighbour-
hood is done to determine whether a point is an anomaly
or not. These techniques are simple and do not make any
prior assumption about the underlying data distribution. The
k-Nearest Neighbor (k-NN) method requires euclidean dis-
tances between all data instances, leading to exponential
computation growth. Therefore, several different variations
of k-NN were developed to improve runtime [15], [23]–[25].
Ramaswamy et al. [23] introduced an optimized k-NN by
using techniques such as partitioning the data into cells. This
helped in speeding up the processing as the distance for only
the cells with data points lesser than a pre-defined threshold
was computed. Wettschereck [26] used a supervised k-NN
method to classify a new exemplar based on the majority
classification of the nearest neighbours. The weighted voting
power decreased as the distance increased. Belalla et al. [15]
proposed unsupervised clustering based anomaly detection,
which flagged data points lying outside tight clusters as
anomalous. They first created a low dimensional representa-
tion of each day’s energy consumption and used k-NN density
estimation based approach to compute anomaly scores by
comparing lower dimensional representation of various days.
These scores ranked days based on how anomalous theywere.
Arjunan et al. [14] proposed a multiuser energy consumption
monitoring and anomaly detection technique that uses an
unsupervised k-medoid clustering algorithm based on Parti-
tioningAroundMediods (PAM) and also uses neighbourhood
information to adjust the anomaly scores.

b: PARAMETRIC METHODS
Statistical parametric methods assume the known underly-
ing distribution of observations [6], [22]. They annotate as

outliers those observations that deviate from model assump-
tion. These methods allow the model to be evaluated
quickly for new instances and are suitable for large datasets.
Seem [16] uses a statistical approach (mean and standard
deviation) to identify anomalous days. He first groups days
based on energy consumption profile (weekends/weekdays)
and then computes anomaly score for each day using gen-
eralized extreme studentized deviate (ESD) many-outlier
procedure that was proposed by Rosner [27]. Wang and
Xiao [28] uses a strategy based on principal component
analysis (PCA) to detect and diagnose the faults in air han-
dling units (AHU). Fault detection using PCA is based on
the intuition that anomalous readings are far away from the
centre (mean/median) of the principal components of sensor
data. Principal components with lower variance are preferred
because, on such dimensions the normal objects are likely to
be close to each other and outliers deviate from the majority.
Narayanswamy et al. [29] compares the correlation, PCA
and rules based methods [30] with a data mining technique
proposed by them called model, cluster and compare (MCC)
to detect faults in variable air volume boxes in large com-
mercial buildings. Zhang et al. [5] proposed a regression,
entropy and clustering based method to detect anomalous
days for accurate demand response (DR) prediction. They
define anomalous days as vacation days, when energy con-
sumption mainly consists of automatic cycling of appliances.
The regression method obtained the best test results.

c: NON-PARAMETRIC METHODS
The model of normal (non-anomalous) data is learned from
the input data rather than assuming it a priori. Since fewer
assumptions about the data are made, these models are more
flexible and autonomous. Histogram based anomaly detec-
tion [31] is a nonparametric statistical technique that involves
building a histogram using the feature values in the training
data. The size of the bins plays a key role in determining the
accuracy of the technique. If the test instance falls in any
of the bins of the histogram, it is considered normal, else
anomalous. Desforges et al. [32] proposed a semi-supervised
statistical technique that used kernel functions to estimate
the probability density function of the normal instances. Any
observation lying in the low probability area of this function
is anomalous. Neural networks have also been employed by
researchers to model and predict the energy consumption in
a solar building [33]. Karatasou et al. [34] show how the
performance of neural networks used for building’s energy
prediction can be improved by using some statistical proce-
dures. Brown et al. [35] used kernel regression method to
predict the power output by using the weighted average of
nearby neighbourhoods. They outperformed neural networks
significantly when the training data used was for 6 months or
less.

2) MACHINE LEARNING-BASED METHODS
Most commonly used machine learning methods for outlier
detection employ ensemble learning. Ensemble learning
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methods [36] are based on the intuition that a single algo-
rithm can not detect variety of anomalies present in the
data. Initially, ensemble learning builds several homogeneous
or heterogeneous base learners and then uses combination
techniques to combine their outputs. Ensemble methods
for anomaly detection can be categorized as sequential or
independent [37]. In the former approach, different algo-
rithms are applied sequentially whereas in the latter approach,
the results are combined from execution of different algo-
rithms in parallel. Araya et al. [38] proposed ensemble
anomaly detection (EAD) framework combining several dif-
ferent learners, which in turn relied on pattern and/or predic-
tion based approaches. They evaluated a combined threshold
value (ensemble threshold) depending on the optimal sen-
sitivity and specificity. References [33], [34], [39] investi-
gate an unsupervised autoencoder-based ensemble method
in detecting anomalies in building energy data. Some hybrid
approaches [40]–[42] have also been developed, which com-
bine statistical, neural and machine learning approaches.
Chou and Telaga [43] proposed a real-time prediction model,
neural network auto regression (NNAR) combining time
series autoregressive integrated moving average (ARIMA)
and artificial neural network (ANN). They used the 2-sigma
rule for anomaly detection and compare their proposed
method with standard ARIMA.

B. BASELINE
This paper addresses the problem of unavailability of proper
benchmarking data as well as a unified set of metrics to evalu-
ate the performance of various outlier detection schemes. The
accuracy measures to evaluate different anomaly detection
approaches developed so far are not well defined. Public
ground truth is not readily available; therefore, existing work
uses the following ways to create a baseline:
• manual inspection of hundreds of traces of the dataset
by a domain expert,

• artificial injection of anomalies in the dataset, and
• discussion with building managers or owners to verify
the anomalies.

All the above mentioned strategies either rely on third-party
account or create privacy concerns and are intrusive. The
manual inspection of hundreds of different traces of data
seems impractical and inefficient, and is subject to human
error (e.g., memory recall). Many studies also employ syn-
thetic datasets or artificial anomalies with the objective to
successfully uncover them using their proposed methods.
This technique may not be able to model a realistic distribu-
tion of anomalies. Another way to have the true information
about the anomalies is by asking the users or home owners to
review their activities on a fixed time basis.

Khan et al. [44] used outlier detection schemes to uncover
the injected anomalies in their work.Whereas, [10], [14], [29]
asked the building managers to manually verify anomalies in
their dataset. The work done by [45] discusses the anomalies
uncovered (high true positive rate and low false positive) by
their method through visual inspection. The authors however,

claim to not be able to analyze the missed anomalies (false
negatives) due to the lack of labelled data. Bellala et al. [15]
use help from building administrators to select a threshold k,
such that top-k days are labelled as anomalous.

III. PROPOSED METHODS
A. NOMENCLATURE
The following symbols are used in the remainder of the paper.
d day of the month
g number of groups with similar score
h hour of the day
m number of monthly data points per house
n number of houses in the dataset
s a segment in segmented or piecewise linear regres-

sion
X weekday or weekend data matrix with hours of the

day as rows and days of the month as columns with
entries xh,d ∈ X

Z z-score matrix with entries zh,d ∈ Z
δ user or building administrator-defined threshold
µh hourly mean
σh hourly standard deviation
label1 positive side of the anomaly
label2 negative side of the anomaly
score a row vector of anomaly scores
pos a list of indices of anomaly scores sorted in descend-

ing order

B. METHODOLOGY
One concern that power utilities have is to reduce the number
of customer complaint calls when they receive a high elec-
tricity bill. Informing a customer in advance, proactively, can
be a positive experience for customers.

For cases like these, we have devised an approach that
would detect anomalies from weekly or monthly data. This
approach gives power utilities a flexibility to input the desired
threshold, δ such that if the z-score is above or below δ stan-
dard deviations (δ-SDs), the observation would be considered
anomalous and marked as ‘1’. This flexibility can help the
utilities to easily segregate customers based on the degree
of their anomalous activities. Customers with high anomaly
scores are likely to get high electricity bills in the future,
hence they have a higher chance of making a complaint
call.

The energy consumption (kWh) histograms of different
houses in Dataport dataset were fitted with best (least sum of
squared error) probability density functions. The set of proba-
bility density functions used to fit the histograms were alpha,
beta, gamma, chi squared, boxcox, rayleigh, skewnorm, log-
norm, loggamma, weibull, exponorm and logistic. The details
of these continuous distributions can be found in the statistics
package of SciPy.1 Fig. 1 shows histograms of four differ-
ent houses with ids 1,2,8 and 14 fitted with four different
probability density functions that are alpha, exponnorm, beta

1https://docs.scipy.org/doc/scipy/reference/stats.html
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FIGURE 1. Probability density functions that best-fit four different houses
in short-range dataset. The best-fit distribution for house ids starting
from top-left quadrant, going in clockwise direction (1,2,14,8) are alpha,
exponnorm, skewnorm and beta respectively.

and skewnorm. As can be seen in fig. 1, there is no particular
distribution that best fits all the houses in the dataset. There-
fore, a distribution function can not be generalized for all the
houses.

We know that Chebyshev’s inequality [46] guarantees that
atleast 75% of data lies within 2-SDs of the mean or in other
words for a threshold δ, we can say that atmost (100/δ2)% of
values that are outside (δ-SDs) are considered as anomalous.
This theoretical bound is much weaker than the actual but that
is expected. We propose two approaches to generate ground
truth anomaly labels based on the size of the available data:
short-range and long-range.

Algorithm 1 Statistical Method to Generate Ground-Truth
Anomalies for Short-Range Data
Require: n,m, δ

for i = 1: n do
for j = 1: m do
calculate µh, σh

calculate zh,d =
xmh,d−µh
σh

(1)
label1h,d ← zh,d > δ

label2h,d ← zh,d < −δ
labelh,d ← label1h,d | label2h,d
label1d ←

∑
h(label1h,d )

label2d ←
∑

h(label2h,d )
score← label1d − label2d
[pos]← Rank days based on score
Find g groups of days with same score,
for k = 1: g do
calculate zd ←

∑
h:zh,d>δ zh,d (2)

sort days in each group g based on zd scores
update pos

end for
end for
normalize score← score−min

max−min (3)
end for
Return score, pos

1) SHORT-RANGE DATA
This method is based on the z-scores. A z-score is a measure
of how many standard deviations a data point is from the
sample mean. The intuition behind a separate algorithm for a
short-range data is the uncertainty in the consumption pattern
and also unavailability of long-range datasets due to privacy
concerns.

For this method, we separate the monthly data into groups
of days with similar energy consumption profiles. For resi-
dential houses, we create two groups, weekdays and week-
ends. The energy consumption profile of days belonging
to the same group would be similar. We then perform the
following steps for each group.

1) For each data group matrix X, whose (d, h)th entry
represents the amount of energy consumed at hth hour
of the day and d th day of the month, we compute the
hourly mean µh and standard deviation σh across all
days in the group.

2) We then compute the z-score for each element in the
matrix X using eq. (1) in Algorithm 1.

3) The threshold for anomaly is taken as an input by
the user. The values in matrix Z are compared with
the threshold. If the value of |zh,d | > δ, then the label
is marked as ‘1’ (abnormal) else ‘0’ (normal). The
obtained label values are stored in binary matrices,
label1h,d and label2h,d , respectively. The label for each
hour of the day labelh,d is obtained by performing a
logical ‘or’ operation between label1h,d and label2h,d .

4) For the day-level score, we sum the rows of ground
truth matrix obtained at hour-level. We then subtract
the scores in label1h,d and label2h,d matrices to get
the net score. The value of net score determines the
extent of abnormal energy consumption on a particular
day. The positive net score indicates the positive side
of anomaly, that is when the energy consumption is
more than usual, whereas the negative score indicates
the abnormally low energy consumption.

5) The annotated positive and negative label on a weekend
group is shown in fig. 2. This figure shows energy
consumption of House1 from Dataport on weekend
days. The red circles indicate positive anomaly whereas
the black star represents negative anomaly. As we are
more interested in the positive side of the anomaly,
we sort the days in the descending order of the day-level
anomaly scores.

6) We create groups of days with the same anomaly score
to resolve the ranking conflict between days with the
same score.

7) For each group, we compute the sum of z-score values
that are greater than the desired threshold δ, as shown
in eq. (2).

8) Finally, we normalize the scores using min-max nor-
malization using eq. (3) in Algorithm 1, where the max
and min values are taken from the data group matrixX.

9) The algorithm outputs pos which represents days in
decreasing order of their anomalous behaviour and
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FIGURE 2. Annotated anomalies on a weekend data group in short-range
data.

FIGURE 3. Prediction of energy usage by segmented linear regression.
Three different case scenarios of energy consumption using segmented
linear regression are: a) unsegmented linear regression b) segmented
linear regression with one breakpoint, and c) segmented linear regression
with two breakpoints. Actual energy consumption is shown in blue dots
whereas the segments that best fits the data are shown in black.

score which defines the extent to which these days are
anomalous. A day is anomalous if it is assigned a score
greater than 0.

2) LONG-RANGE DATA
Long-range energy usage and temperature data gives a better
understanding of the user consumption pattern through the
annual seasons. With more data, it is easier to know the
consumption trend of a user.

For this case, we have used annual energy and temperature
data from different houses. This data is sampled at hour-level.
The correlation coefficient between outside temperature and
energy consumption as shown in fig. 3a is 0.955. The high
correlation between these two variables is the foundation of
this approach. The graphs shown in fig. 3 represent three
different cases of energy consumption with respect to the
outside temperature. During winters, the energy consump-
tion increases as the temperature decreases due to invariable
heating needs. This is represented in fig. 3 by the negative
slope segment ‘AB’. Similarly, during summers, as the tem-
perature increases the energy consumption also increases due
to cooling loads as can be seen by the positive slope segment
‘CD’. The energy used for cooling or heating of the building
is referred to as temperature-sensitive usage. The energy used
by computers, lights or appliances not sensitive to the outside

temperature is referred to as temperature-insensitive usage.
This kind of usage can be identified by a segment with a
near-zero slope, ‘EF’. A house could have a cooling or a
heating appliance, or both, or none, therefore a single linear
regression function is not adequate to cover all the cases.
This is why the segmented linear regression is necessary,
as described below.

1) The first step is to prepare the dataset for training.
Preprocessing involves cleaning the data, removing
inconsistent and redundant timestamps, adding miss-
ing timestamps, adding missing energy consumption
values and integrating hourly temperature data. The
missing values are usually caused by a hardware or
a software failure of the measurement device. The
missing energy values were replaced by the values of
previous or next year’s data corresponding to the same
timestamp. For cases where the previous and next year
data was not available, the average of previous and next
hour of the current year was used.

2) After the data is preprocessed, it is split into training
and validation sets in the ratio of 9:1 respectively.
A single instance or sample at hth hour was selected
from every 10 samples to create the validation set. The
remaining samples were used for the training set.

3) Next, the training set is used for model selection or
model training. Grid search is used to train the model.
The parameters in the case of pure, unsegmented linear
regression are also tuned in this step. The parameters
tuned include the set of breakpoints in the case of
segmented regression, regression coefficients and con-
stants. The optimal value of the breakpoint is found
such that the coefficient of determination, R2 shown in
eq. (4) is maximum. In this equation, yi refers to the
observed data point, ȳ is the mean of all the observed
data points and fi represents the predicted power con-
sumption.

R2 = 1−

∑
i(yi − fi)

2∑
i(yi − ȳ)2

(4)

4) The model is tested on the validation set. In a sce-
nario where no heating or cooling is used, the unseg-
mented linear regression may perform better than the
segmented one.

5) The sorted temperature values are grouped together
such that each group has sufficient number of energy
consumed data points. Since the frequency distribution
of data points at the maximum and minimum tempera-
ture values will be minimum, wemerge the groups such
that each group has sufficient (in our case atleast 20)
number of data points.

6) The grouped training data is partitioned based on the
parameters obtained from the test on the validation
set. The number of segments and the breakpoints are
optimally chosen depending on the best R2 value.

7) For each segment in the partitioned training dataset,
energy consumption values are predicted using the
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FIGURE 4. Block diagram for annotating ground truth anomalies using long-range data.

best learned linear regression coefficients and constants
values.

8) To determine the anomalous data point, we compute
the z-score of the difference between the actual and
predicted energy consumption as we did in step 2 of
Algorithm 1. We compare the z-score with δ, as we
did in step 3 of Algorithm 1 to obtain two binary
column vectors, label1h and label2h representing the
positive and negative side of the anomaly respectively.
To obtain the final label, we performed a logical ‘or’
operation between label1 and label2 generated for each
timestamp.

9) Using these binary anomaly labels for the grouped
training dataset, we identify the corresponding anoma-
lous data in the actual hourly readings and annotate the
ground truth. On the grouped training dataset, figure 5
shows the normal or non-anomalous data (blue dots),
regression model (shown by straight lines) and anoma-
lies (red stars). We may observe annotated anomalies
(red star) closer to the straight line than the normal data
(blue dot) because data points are an average of energy
consumption values lying in the same bin. So, it may be
possible for one of the value in the averaged group has
z-score of the difference between actual and predicted
energy greater than a threshold whereas the rest of the
values be closer to the straight line. The correlation
coefficients between the average yearly energy con-
sumption and the outside temperature corresponding to
the three regression line segments are 0.6545, 0.8440
and 0.7937 respectively.

IV. EXPERIMENTAL SETUP
A. DATASET
1) DATAPORT DATASET
The first dataset used is the publicly available Dataport
(Pecan Street) dataset with NILMTK [47]. For our work,
we are using the NILMTK format data which consists
of 239 houses located in Texas, US. Each house has
meter-level as well as appliance-level data, which are sam-
pled at 1 minute intervals. We are using two months (April

FIGURE 5. Annotation of anomalous observations in long-range data.

and May) of meter-level data from nine houses. For con-
venience, we consider 30 days in both months. The aver-
age temperature in these two months was 19◦C and 23◦C,
respectively. Short-range data analysis III-B.1 was applied
to this dataset. We have used houses with ids 1, 2, 3, 4, 5, 8,
11, 12 and 14. The house ids which were discarded due to
missing data are 6, 7, 9, 10, 13. For each month, the data was
grouped based on the day types, that is, days of the week with
similar energy consumption profiles were grouped together.
Therefore, for each month we have weekdays consisting of
22 days and weekends consisting of eight days. Aggregation
of both groups of data takes place at an hour-level. Hence,
the size of the weekday dataset per month would be (24×22)
and that of weekend would be (24× 8).

2) HUE DATASET
The second dataset used is collected from different residential
houses located in Burnaby in British Columbia, Canada [48].
This dataset has meter-level electricity consumption val-
ues which are sampled at each hour. The data is collected
over a period of three years, ranging from January 2015 to
January 2018. We have used five houses from this dataset
with house ids 3, 4, 5, 6, 7. However, there are more than five

VOLUME 7, 2019 62727



M. Gaur et al.: Performance Evaluation of Techniques for Identifying Abnormal Energy Consumption in Buildings

houses in this dataset. Hourly temperature data was included
in the dataset, which we used to detect abnormal energy
consumption from yearly data. The integration of weather
and energy consumption data was done to find the correlation
between them. Long-range data analysis III-B.2 was applied
to this data.

B. PERFORMANCE METRICS
Performance metrics allow us to measure how accurately
a detection algorithm identifies an anomaly in the energy
consumption pattern. It is important to measure how effective
an approach is in the classification task of anomalous vs
non-anomalous behaviour of energy signals. The notion of
anomaly score is used to quantify the extent of anomalous
behaviour in the energy signals. High anomaly score means
high degree of anomalousness. For example, the work done
by [16], uses robust statistical methods to determine if the cur-
rent day’s energy consumption is significantly different from
the previous days’ energy consumption. They use generalized
extreme studentized deviate (ESD) as an outlier identification
method [27]. To quantify how far and in which direction an
outlier is from the mean value of non-outlier observations,
a modified z-score was used.

We have compiled a list of performance evaluation metrics
that have been used to measure the performance accuracies
in the majority of the anomaly detection methods. These are
explained in the remainder of this section.

1) TRUE POSITIVE RATE (TPR)
This is also commonly known as sensitivity, or outlier
detection rate, or recall. TPR is the proportion of correctly
identified positive classes from the total possible positive con-
ditions, that are true positives (TP) and false negatives (FN).
In the context of anomaly detection, TPR measures the frac-
tion of anomalous events identified by a given method.

TPR =
TP

TP+ FN
, (5)

The research done by [5], [38] have used TPR as their perfor-
mance evaluation metric. In section V, TPR is reported as the
mean of all TPR values obtained from different houses.

2) TRUE NEGATIVE RATE (TNR)
Also known as specificity, TNR is the proportion of correctly
identified negative classes from the total possible negative
conditions, that are true negative (TN) and false positive
(FP). In the context of anomaly detection, TNR measures
the fraction of non anomalous events identified by a given
method. References [15], [38] have used TNR to measure the
accuracy of their testing. Both TPR and TNR aim to reveal
how accurately a technique has identified the true nature of a
given sample, that is whether it is anomalous or not.

TNR =
TN

TN + FP
, (6)

3) FALSE POSITIVE RATE (FPR)
FPR refers to the rate of false alarms or fall-out, which
means misclassifying some non-outliers as outliers. It has
been applied as an accuracy metric in [5], [38], and [49].

FPR = 1− TNR, (7)

4) F1 SCORE
F1 score or F-measure is widely used in the field of informa-
tion retrieval for measuring search, document classification
and query classification performance. It indicates the retrieval
effectiveness of the system and is defined as the harmonic
mean of the precision defined in eq. (9) and recall (TPR). F1
score is defined in eq. (8).

F1 =
2 ∗ prec ∗ recall
prec+ recall

, (8)

Precision and Recall (TPR), on the other hand are the
traditional performance metrics used to evaluate the quality
of the information retrieval system [50], [51], and are also
widely used to measure the performance of outlier detection
schemes. Precision (prec) is the fraction of relevant instances
among the retrieved instances as defined in eq. (9). High
precision is when the algorithm returns more relevant results
than irrelevant ones. On the other hand, recall (or TPR ),
as defined in eq. (5) is the fraction of relevant instances that
have been retrieved over total relevant instances. High recall
is when the algorithm returns most of the relevant results.
Equation (10) expresses F1 score in terms of TP, FP and FN.

prec =
TP

TP+ FP
, (9)

F1 =
2TP

2TP+ FN + FP
, (10)

Reference [9] uses precision and recall as metrics to
compare and evaluate the performance of outlier detection
schemes on real-life and synthetic datasets.

5) JACCARD INDEX
Jaccard index, also referred to as intersection over
union (IOU), is a metric used for comparing the similarity and
diversity of sample sets. In the context of anomaly detection,
this measure estimates the similarity between the two sets of
data, one obtained through the anomaly detection method and
other from the ground truth anomalies.

Jaccard =
TP

TP+ FP+ FN
, (11)

6) FALSE POSITIVE WHEN DETECTION
RATE IS 100% (FP-100)
FP-100 is the number of false positives returned by the algo-
rithmwhen the algorithm has detected all the anomalous days
as given in the ground truth. It can be used to compare two
algorithms, suppose if a dataset has 10 known anomalies and
the rank of the 10th anomaly is 17 by algorithm ‘A’ and 20 by
algorithm ‘B’, then algorithm ‘A’ is better than ‘B’ because
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for 100% detection rate, ‘A’ has only 7 false positives whereas
‘B’ has 10. The work by [49] have used FP-100 as a metric
to evaluate the performance of their algorithm.

7) AREA UNDER CURVE (AUC)
The receiver operating curve (ROC) is commonly used to
measure the performance of the classifier by plotting true
positive rate against false positive rate. The area under this
curve, AUC, defines the quality of the detector. AUC is often
used to measure the performance of the algorithm [5], [15],
[38], [49]. The value of AUC = 1 represents a perfect
anomaly classifier whereas a value of AUC = 0.5 signifies
the performance of the model to be no better than a random
guess.

8) PARTIAL AREA UNDER CURVE (pAUC)
The partial area under the curve is a performance metric
defined as the area within the range of specific true positive
and false positive rate. It is more suitable for comparing clas-
sifiers whose ROC curves cross [38]. For example, if amongst
two anomaly classifiers A and B, let us say A has better true
positive rate than B in a specific false positive rate rangewhile
classifier B performs better in a different false positive rate
range, then we can identify a specific range relevant to the
application to apply pAUC rather than AUC, which gives an
overall combined metric.

9) RANK POWER
Even though Precision and Recall are widely used to measure
the accuracy of anomaly detection, they still lack in some
respects, mainly because they do not give any preference
to the ranks, that is, how anomalous is a particular sample.
As proposed by [9], rank power shown in eq. (12) evaluates
the ratio of known anomalies and anomalies returned by an
algorithm along with their rankings [49].

RankPower(k) =
l · (l + 1)

2 ·
∑l

i=1 Ri
(12)

where l is the number of outliers among top k objects. Ri is
the position of the ith outlier in a rank-order list.

C. IMPLEMENTATION
Algorithms used to annotate the data observations using short
and long-term approaches were implemented in MATLAB.
The codes to implement these methods have been made avail-
able onGitHub2. The implementation of various performance
metrics is also publicly available at the same site.

V. RESULTS
We conducted performance experiments on real-world pub-
licly available datasets. As mentioned in section IV-A,
we have used a subset of Dataport dataset [47] and the
HUE dataset [48] to generate labels for short-term data
(weekly or monthly) and long-term energy consumption

2https://github.com/megha89/AnomalyDetection

TABLE 1. Performance accuracies on weekdays and weekends on
Dataport when the threshold is 1.65-SDs.

TABLE 2. Performance accuracies on weekdays and weekends on
Dataport when the threshold is 2-SDs.

data (yearly) respectively. The ground truth labels are gener-
ated for three different thresholds, that are 1.65-SDs, 2-SDs
and 2.5-SDs. As the value of threshold increases, the anoma-
lies become sparser.

The anomaly scores obtained using anomaly detection
methods [14]–[16] are compared with the scores generated
through Algorithm 1. These methods which we refer to as
‘multiuser’ [14], ‘hp’ [15] and ‘seem’ [16] have been briefly
discussed in section II of this paper. Table 1 shows a com-
parison of different accuracy measures for weekdays and
weekends separately, provided that the data lying outside
±1.65-SDs is considered anomalous. Similarly, Tables 2
and 3 report the accuracies of algorithms for thresholds
±2-SDs and ±2.5-SDs, respectively. The upward (↑) and
downward (↓) arrows in tables 1, 2 and 3 indicate the direc-
tion of desirable performance according to that metric.

For both weekday and weekend groups, it can be observed
from Tables 1, 2 and 3 that [14] gives the best TPR
whereas [16] outputs the lowest TPR across all thresholds.
One possible reason why [16] outputs the lowest TPR could
be that they consider an upper bound on the number of
potential outliers, ou. The maximum number of potential
outliers can be ou < 0.5(o− 1) where o is the total number of
observations. We should also note that its anomaly detection
rate increases as we increase the threshold for anomalous
data.

Contrastingly, in case of TNR, [16] clearly outperforms
the rest in correctly identifying the normal observations from
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TABLE 3. Performance accuracies on weekdays and weekends on
Dataport when the threshold is 2.5-SDs.

FIGURE 6. Comparison of performance accuracies on weekdays when the
threshold is 1.65-SDs.

abnormal ones during weekdays and weekends. Furthermore,
in case of false alarms or FPR, [16] again has a very low
misclassification rate in comparison to others methods. After
comparing TPR, TNR and FPR values, it can be concluded
that the techniques [14] and [15] classified majority of the
normal data as abnormal therefore maximizing TPR and FPR
but minimizing TNR. Thus, only presenting a very high TPR
result can be misleading if it is not accompanied with high
TNR and low FPR values. All three rates are important to
make an informed decision about the classification accuracy.

The ability of an algorithm to return all known outliers
with minimum number of false positives is captured by the
metric FP-100. Here, [15] returns less false positives when
detection rate is 100% than [14] in case of weekdays but
vice versa for weekends. We have not mentioned the results
from [16] because this method does assign a score to all
the observations, therefore leading to cases where known
anomalies are more than the assumed potential anomalies.

The other metric, F1 score, which is based on precision
and recall, evaluates the ranking of results. From eq. (10),
we observe thatF1 is directly proportional to TP and inversely
proportional to the sum of FN and FP. Therefore, best F1
can only be attained with high true positives and low false
positives and false negatives. On comparing F1 scores across
all thresholds, we observe that when the threshold is high-
est, [16] attains the best F1 score. Also, it should be noted that
as the threshold value increases, the F1 score using [16] also
increases but on the other hand, this score decreases for [14].

FIGURE 7. Comparison of performance accuracies on weekends when the
threshold is 1.65-SDs.

FIGURE 8. Comparison of performance accuracies on weekdays when the
threshold is 2-SDs.

FIGURE 9. Comparison of performance accuracies on weekends when the
threshold is 2-SDs.

Jaccard index as shown in eq. (11) is a metric similar to
F-score. It is a statistic used to estimate the similarity of two
sets of data. We use the Jaccard index values to compare the
accuracy of different anomaly detection methods. Intuitively,
it follows a similar trend as F1 score but with lower scores.
The most commonly used metric is area under the ROC

curve (AUC). After the ranked list of data is obtained
from a algorithm, the user chooses a threshold, τ ∈ (0,1)
declaring that the points above the threshold are anoma-
lous and, the remaining normal. Each choice of value of τ
gave out a certain value of true positive and false positive.
On varying this threshold τ , different values of TPR (y-axis)
and FPR (x-axis) were obtained, leading to a ROC curve.
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FIGURE 10. Comparison of performance accuracies on weekdays when
the threshold is 2.5-SDs.

FIGURE 11. Comparison of performance accuracies on weekends when
the threshold is 2.5-SDs.

The values for AUC presented in Table 2 were calculated
after considering thresholds from 10% to 90% with a step
size of 10%. The low values of AUC is due to the low range
of false positives. Though the values of TPR and FPR were
high but the range across all thresholds was very low leading
to low AUC.

Rank power [9] is an effective metric that meets the users’
satisfaction by factoring in the rank of the outliers. As shown
in eq. (12), rank power for k objects is the ratio of known l
anomalies in top k data to the ranking of those l anomalies as
returned by the algorithm. In our study, we took the value of
k as 3 because the number of anomalies returned by [16] in
case of weekend data were at most 3. Tables 1, 2 and 3 show
that [16] outperforms other approaches across all thresholds.
From the results, we can say that the ranking of anomalies
in case of [16] was more precise than the rest. We have also
graphically presented the results given in the tables using
overlapping bar graphs in figures 6 to 11.

From this experiment, we can conclude that [16] outper-
formed the rest of the techniques. If it had assigned scores to
all the days, then it would have performed the best across all
the reported metrics.

VI. CONCLUSION
In this work, we discuss the two most common problems
in detecting abnormal energy consumption in buildings. The
first problem is the the lack of labelled ground truth to train

supervised models, and the second is the lack of consistent
performance accuracy metrics.

To mitigate the first problem, we have proposed two
methods to generate labelled data for abnormal energy con-
sumption in buildings. These methods are based on the size
of the available dataset. For a short-term dataset, we have
proposed a statistical approach that uses user-defined input
as a threshold for anomaly scores. It outputs hourly and
day-level binary labels and scores denoting whether the given
hour is anomalous or not, and to what extent, respectively.
The other method is for long-range data, where an approach
based on segmented linear regression is proposed. It uses
the correlation between the average temperature values and
average energy consumption values to find the anomalous
timestamps.

For the second problem, we studied and conducted exper-
iments to evaluate different performance metrics used in the
field of anomaly detection. We can therefore conclude that
there is no perfect metric available that can capture all kinds
of anomalous behaviour. However, the combination of TPR,
TNR, FPR, Rank Power, AUC and FP-100 metrics gives a
more robust and accurate view of an algorithm’s performance.

The contributions made through this work are: (1) pro-
posed two novel methods to generate labelled data, (2) a
publicly available source code to generate labelled data,
(3) a publicly available annotated dataset of anomalies,
(4) a comprehensive review of different accuracy measures,
and (5) a framework and discussion of what performance
accuracy metrics to use.
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