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ABSTRACT

In non-intrusive load monitoring (NILM), an increase in sampling
frequency translates to capturing unique signal features during tran-
sient states, which, in turn, can improve disaggregation accuracy.
Smart meters are capable of sampling at a high frequency (typi-
cally 20kHz). However, transmitting signals continuously would
choke the network bandwidth. Given the deployment of millions
of smart meters which communicate over a wireless wide-area net-
work (WAN), utilities can only collect power signals at very low
frequencies. We propose a compressive sampling (CS) approach. Af-
ter measuring the high-frequency power signal from a smart meter
will be encoded (by a random matrix) to very few samples making
the signal suitable for WAN transmission without choking network
bandwidth. CS guarantees the recovery of the high-frequency sig-
nal from the few transmitted samples under certain conditions.
This work shows how to simultaneously recover the signal and
disaggregate it; hence, the name Compressive NILM.
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1 INTRODUCTION

Energy disaggregation is the task of estimating the energy consump-
tion of individual electrical appliances given the total consumption
recorded by the smart-meter. It is a single channel (smart-meter)
blind source (appliances) separation problem. This makes the prob-
lem highly underdetermined in nature — one equation (smart-meter
consumption) and many variable (appliance consumption). There-
fore the problem has infinitely many solutions.
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When the power signal is of sufficiently high frequency, integer
programming based approaches provide a feasible solution [2, 20].
Similarly factorial hidden Markov model (FHMM) is used to dis-
aggregate appliance loads from high frequency samples [12, 16].
The performance of such techniques degrades when the sampling
frequency is reduced. Sparse coding approaches yield somewhat
better results at low-frequencies [9, 11]; however, even with sparse
coding, higher frequencies translate to better results.

Smart-meters can sample at high frequencies, but higher frequen-
cies mean generation of more data. Transmitting this data from the
building smart-meter to the cloud at the utilities consumes some
bandwidth; higher the sampling frequency higher is the bandwidth
consumed. Note that, it is not only one building that would be trans-
mitting this data, all the buildings would be transmitting it; in such a
scenario it is likely the entire network bandwidth will be consumed
for only transmitting power signals! To keep the network usage
at check, the smart-meter transmits the signal at low-frequencies
(even though it is capable of sampling at high frequencies).

Typically it is expected that energy disaggregation would be
offered as a service by the utilities. However, since the utilities will
have access to only low-frequency information, the disaggrega-
tion accuracy is likely to suffer. To bridge the gap between high-
frequency sampling and low-frequency transmission we propose a
compressed sensing / compressive sampling (CS) approach [4, 5, 7].
We project the high frequency signal to a lower dimension em-
bedding by a random projection matrix. The lower dimensional
signal will emulate a low frequency signal which can be then trans-
mitted. The random projection can be easily integrated into hard-
ware [6, 21]. Under certain conditions, such a lower dimensional
embedding approximately preserves the information of the high
frequency signal and can be recovered using sparsity promoting
techniques like £1-minimization [10] or matching pursuits like al-
gorithms [18].

This work extends the traditional compressed sensing dictates
(e.i., recovering the signal) by adding simultaneous disaggregation
as part of the recovery process. Our formulation is based on the
dictionary learning approach [19] (the same technique used in
sparse coding [9, 11]).

The paper will be organized into several sections. We will discuss
the basics of CS in the following section. In Section 3, we describe
our proposed formulation. The results will be detailed in Section 4.
Finally, the conclusions of this work will be discussed in Section 5.

2 COMPRESSIVE SAMPLING

Compressed Sensing (CS) studies the problem of solving an under-
determined linear system of equations where the solution is known
to be sparse. In practical scenarios, the system is corrupted by noise
as well.
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Ymx1 = AmxnXnx1 + Emx1,m < n (1)
The solution x, is assumed to be k sparse (k < m < n).

For an underdetermined system, there can be infinitely many
solutions. Research shows that when the solution is sparse, it is
necessarily unique [8]; i.e., there cannot be more than one sparse
solution. Further research established that when the number of
equations satisfies the following criterion (2), £1-minimization can
recover the sparse solution.

m = cklog(}) (2)
The £1-norm minimization is robust to noise [3]. The recovery is
formulated as:

min ||y — Ax[}3 + Allx]l 3)

CS recovery is not possible for any system of equations A; it is
only guaranteed when the so called restricted isometric property
(RIP) holds. This condition is expressed as follows:

(1=8)lIxlf < lAx5 < (1+6)lIxII3 4
Here § is a small constant. RIP guarantees that the system A behaves
as a near isometry. The value of § dictates how much the system
deviates from ideal Isometry. This property is usually satisfied by
random matrices for example, restricted Fourier ensembles and
matrices drawn from distributions such as Gaussian, Bernoulli, and
Binomial.

Practical systems/signals are hardly ever sparse. However, most
of them have a sparse representation in some transform domain.
For example, images are sparse in discrete cosine transform (DCT)
or wavelet, speech is sparse in short time Fourier transform, etc.
This phenomenon allows expression of the signal x in terms of
transform domain sparse coefficients «,

Analysis : a = ¥x (5a)
Synthesis : x = vl (5b)

Here ¥ is the sparsifying transform and the relationships (5) hold for
orthogonal (¥TY =1 = v¥T) and tight-frame Ty =1 £ vyT)
systems.

For signals that have a sparse representation in the transform
domain, the recovery is expressed as follows:

mognlly—A‘PaII§+M|aII1 (6)

Once the sparse coefficients are recovered, the signal is obtained
by applying the synthesis equation (5b).

Following (2), note the number of equations/samples needed to
recover a signal is directly dependent on the sparse representation
« and thereby on the choice of the transform . For example, if x is
an image, the number of corresponding non-zero DCT coefficients
will be higher than the corresponding wavelet coefficients making
the choice of coefficient a crucial step in CS recovery.

Fixed transforms like Fourier, DCT wavelet have nice mathemat-
ical properties but are not known to produce the sparsest repre-
sentation. In signal processing, it is well known that an adaptive
basis (learnt from the signal) produces the sparsest representations.
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This paved the way for dictionary learning based solutions; starting
with the work on K-SVD [1].

In dictionary learning, the sparsity basis is learnt from the data.
For example, if the problem involves an image, the sparsity basis is
learnt from the patches of the image. The recovery is posed as:

min lly—Ax| +u( )" 1P - Dzill + 2zl ) ()
i

x,D,zi’'s

Dictionary Lxearning
Here P; representation patch extraction operator; D is the basis
that is being adaptively learnt from the patches and z; are the
corresponding sparse representations of the patch P;x. In dictionary
learning, D replaces the role of ¥ in CS.

When the basis is learnt adaptively the recovery results are far
better than of classical CS where the sparsifying basis is fixed. There
are many other branches of CS and dictionary learning, but these
are not pertinent to us. The interested reader may peruse [14].

3 COMPRESSIVE NILM FORMULATION

We assume that the smart-meter is sampling at the rate of n samples
per unit of time (say an hour); but is only allowed to transmit m < n
samples in that period. Let xpx1 represent the signal sampled by the
smart-meter. Currently a sub-sampled version of x is transmitted;
we propose to embed the high dimensional signal into a lower
dimensional representation y,,;x1 by a random projection matrix
Amxm (satisfying RIP). This is represented by,

y=Ax+e 3)
It is unlikely that the system will be corrupted by noise, but for
the sake of generality, we assume Gaussian noise ¢. The problem is
to disaggregate the appliance level consumption given the lower
dimensional representation y. To do so, a standard NILM training
and testing approach is followed.

3.1 Training

In the training phase the individual appliances are metered. For each
appliance j, the samples for the i-th unit of time is represented by
xl! . The complete training data for the i-th appliances is represented
by,

X/ = [x{ |x£ ||x]j\]] (9)
Here we assume N units of time in the training phase.

In our proposition, the utilities do not have access to X/, but has
received a lower dimensional projection of it, given by:

Y/ = AX) + E/ (10)

where Y/ = [y{|y£||ylj\]] and E/ = [€{|eé||£;\]]
Following the work of sparse coding [11], each appliance is
modeled by a sparse codebook/dictionary D/. This is expressed as,

x/=pizJ 11)
We reiterate that our work assumes that the disaggregation

happens at the utilities server/cloud. Incorporating this model (11)
to the data received at the utilities we get:
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Y/ = AD/ZJ + EJ (12)
Following the work on sparse coding, the training phase requires

solving for the dictionaries and the sparse codes (not required
during testing) for modeling the appliances. This is expressed as,

min ||Y/ - AD/Z7||} + 21127 |Ix (13)

DJ,zJ
This (13) is easily solved using alternating minimization of the
codebook and the sparse codes. During the update for the codebook,
the sparse code is assumed to be constant. The update is given by:

min||Y/ - AD/Z/|2 = D/ = ATY/ (Z7)7
DJ

where (-) denotes the Moore-Penrose pseudoinverse.
The update for the sparse codes assumes that the codebook is
fixed. The update is expressed as,

min ||Y/ — AD/Z7 ||} + A1 Z/ s (14)
ZJ

This is a standard ¢£1-minimization problem that can be solved using
any iterative thresholding algorithm.

Note that the solution to the codebook and sparse codes automat-
ically reconstructs the original signals acquired by the smart-meter

(11).

3.2 Testing

In the testing/operation stage, the task is to disaggregate the total
load acquired by the smart-meter. The total load, as recorded by
the smart-meter in a unit of time is x;. Therefore for all M units of
time, the data is expressed as,

X = [x1|xz|...|xM] (15)
This (15) is an aggregate of the loads consumed by individual
appliances.

X = fo (16)
7

Incorporating the sparse coding model (11) into (16) leads to:

X:ZXJ:ZDJZJ' (17)
7 7

As mentioned before, the sparse codes obtained during the train-
ing phase are not useful later on, only the codebooks are used in
(17).

In the compressive NILM scenario, the utilities do not have access
to the fully sampled data X, but has received its lower dimensional
embedding Y : Y = AX + E. Incorporating (17) into the data acqui-
sition model leads to:

Y:AZDij+E (18)
J
During the testing phase, the codebooks are known; the goal
is to estimate the sparse codes Z/. The solution is obtained by
minimizing the following,
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S 2 .
min[|y -4 3] 0/27| + 312710 (19)
J J
As before, this can be solved using any iterative thresholding algo-
rithm.

Once the sparse codes are solved, the power consumption of in-
dividual devices can be obtained using (11). Note that our algorithm
automatically reconstructs the signal during training and testing
phase. If one is interested in applying some other algorithm, they
can run it on the reconstructed data at the server/cloud.

4 EXPERIMENTAL RESULTS

Here we report results on the REDD dataset [13] — a moderate size
publicly available dataset for electricity disaggregation. The dataset
consists of power consumption signals from six different houses,
where for each house, the whole electricity consumption, as well
as electricity consumptions of about twenty different devices, are
recorded. The signals from each house are collected over a period
of two weeks with a high-frequency sampling rate of 15kHz. To
prepare ground-truth (high frequency) training and testing data,
aggregated and sub-metered data are averaged over a time period
of 1 minute.

We assume that the utilities acquire the data once every ten
minutes. Given this constraint, we further sub-sample the data
to once every ten minutes (sub-sampled data), from 60 samples
per hour. In the proposed compressive NILM regime, the once
per minute data is projected to a lower dimension of 6 samples
in hour using a Bernoulli matrix (compressively sampled data);
using a Bernoulli projection matrix ensures that our simulations
are hardware friendly.

To compare the performance of our proposed approach, we em-
ploy FHMM [12] and sparse coding (SC) [11] on the sub-sampled
version of the data. These act as the benchmarks. We use our algo-
rithm to disaggregate from the compressive sampled version of the
data. As mentioned before, our proposed method reconstructs the
high frequency data in the process; on this reconstructed data we
apply FHMM. Note that, there is no point in applying sparse coding
on the reconstructed data, since our proposed approach effectively
does the same.

Appliance-level Precision and Recall are used as metrics for
evaluating the performance [15, 17]. While using such a metrics,
we tacitly assume that the appliances are binary-state (ON or OFF)
while disregard other operational states.

The results depict the expected trend. Both the techniques SC
and FHMM perform similarly for a given sampling frequency. The
performance is poor when the sampling is done at regular intervals
(sub-sampled data); but with compressive sampling, the perfor-
mance improves considerably. Our proposed method (Compressive
NILM) effectively disaggregates (using SC) and reconstructs simul-
taneously. The FHMM is applied on the thus reconstructed (higher
frequency - once very minute) data.

5 CONCLUSIONS

This is the first work (proof-of-concept) on the topic of employing
compressed sensing to balance accuracy and bandwidth for NILM
tasks. The results show that the approach is promising.



BuildSys ’20, November 18-20, 2020, Virtual Event, Japan

Singh, Majumdar, and Makonin

Table 1: Disaggregation Performance Evaluation (Using Precision/Recall)

Appliance Sub-Sampled Sub-Sampled Compressive Reconstructed
SC FHMM NILM FHMM
Microwave .53/.34 .55/.32 .70/.58 .71/.55
Kitchen Outlet 1 .30/.11 .27/.10 .37/.15 .35/.13
Kitchen Outlet 2 .33/.11 .32/.11 .45/.15 .40/.14
Furnace. .75/.61 .78/.59 .86/.69 .87/.66
Washer/Dryer .73/.54 .74/.53 .82/.64 .85/.62

In the future we would like to extend the work in two ways. First,
we would like to push the extents of the compressive sampling
and attempt to disaggregate and reconstruct from more aggressive
sampling (compared to 10:1 used in this work). Second, we would
like to attempt some state-of-the-art deep learning models into the
CS framework to improve the disaggregation results.
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