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Abstract—Non-Intrusive Load Monitoring (NILM) researchers
have always assumed the switch continuity principle (SCP),
which assumes that only one appliance ever changes state at
any given point in time. However, SCP cannot be relied upon
100% of the time, especially when unsupervised NILM is used
to guess what appliances might be in a house. This principle
breaks under certain conditions based on the data capture choices
made: number of occupants, number of appliances, measurement
unit, measurement precision, and sampling frequency. This paper
identifies and explores the conditions under which SCP can
and cannot be assumed. This is done through empirical tests
performed on two of the most popular datasets used for NILM.

Index Terms—NILM, disaggregation, data analysis, smart
meter, load monitoring

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), or just simply
disaggregation, is a growing research field that began in 1985
with a report [1] written by George W. Hart (at MIT) for
Electric Power Research Institute (EPRI). NILM is used to
discern what electrical loads (e.g., appliances) are running
within a home/building using only the aggregate power meter.
Why? To help occupants understand how they and their
appliance use energy so that they could conserve to either save
money, the environment, or both. Mathematically speaking,
disaggregation is the inverse problem of aggregation; e.g.,
2 = sum(V) where x is known and the vector V is not — but
where we have some sort of probabilistic model or feature set
to help choose the best values for V given z.

Hart [2] defined the switch continuity principle (SCP) of
having the property that “[i]n a small time interval, we expect
only a small number of appliances to change state in a typical
load” and “we begin with the switch continuity principle
as the foundation” for NILM. He continued to write, “we
expect the number of appliances which change state to be
usually zero, sometimes one, and very rarely more than one”.
Through empirical methods he found that “[s]imultaneous
events, or nearly so within 2-3 seconds, accounted for 4% of
the events in one field test..., but this will vary considerably,
depending on the appliance inventory and usage”. The SCP is
a necessary assumption to having NILM algorithms that can
actively tune general appliance models into specific models
that are house specific [3] (Section II). This is also known as a
semi-supervised learning approach and sometimes inaccurately
referred to as unsupervised learning (see Section II-A).

The caveat Hart identified in the SCP, appliance inventory
and usage can be more specifically defined as: number of
occupants, number of appliances, measurement unit, measure-
ment precision, and measurement sampling frequency. The
number of occupants refers to the the number of occupants
that reside within the house. The number of appliances refers
to the number of appliances that are being disaggregated rather
than the the total amount of appliance in the house. The
measurement unit refers to what measurement is used (e.g.,
current, power). The measurement precision refers to how
precise the measurement reading is (e.g., deci-Amps, whole
Amps, kilo-Watts). The measurement sampling frequency can
also mean the sampling rate (e.g., 1Hz, per minute, 100kHz).

Hart’s 1992 initial definition of the SCP was at a time when
datasets did not exist for NILM researchers. Since that time
other NILM researchers have relied only on this principle
and have not investigated it further on other data to see if
it holds true. Through an empirical data analysis experiment
(Section IIT) on popular datasets (AMPds R2013 [4], AMPds
v2 [5], REDD [6]) used by NILM researchers, I show evidence
(Section IV) that SCP may not hold true as the percentage
of simultaneous appliance state switching has increased since
Hart’s initial tests. I expand on initial experiments done in my
PhD Thesis [7].

II. UNSUPERVISED NILM
A. Defining Learning Types

In the artificial intelligence and machine learning fields there
are three main types of learning: supervised, unsupervised, and
semi-supervised. Supervised learning uses labelled priors/data
to build a model for inference or prediction. Unsupervised
learning builds a model without labelled priors/data. Semi-
supervised learning builds models using a small amount of
labelled data with a large amount of unlabelled data.

If we focus on learning for NILM we would define the
following two terms. Supervised NILM uses sub-metered ap-
pliance data to build a model to then disaggregate. Unsuper-
vised NILM uses general appliance models and actively tunes
them to specific house appliances. Unsupervised learning is
not equivalent to unsupervised NILM because the general
appliance models used for training are considered labelled
data. This means that unsupervised NILM is a semi-supervised
learning problem.
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Unsupervised NILM is a difficult problem for three main
reasons. Firstly, different sampling rates can lead to feature
loss (high-frequency vs low-frequency sampling). Secondly,
there are vastly different power signatures amongst the same
type of appliances. This means that there is no “one general
model” for one type of appliance. Thirdly, learning can only
happen when an appliance state change occurs, and in the case
of unsupervised NILM, only when the state change of a single
appliance occurs, which can be very rare.

B. Related Works

Kim et al. [8] used a combination of four factorial hidden
Markov model (HMM) variants to provide an unsupervised
learning technique. Some factorial HMMs modelled load-state
durations while others modelled time-of-day usage. Emission
probabilities used Gaussian distributions, which were prone to
over fitting. They were not able to use the Viterbi algorithm
to infer load states because of the intractability of some
factorial HMMs and instead used simulated annealing (SA)
[9]. They achieved classification accuracies of between 69%—
98% (for 10 homes) using their modified f-score accuracy
measure. Their results seem to suggest that the accuracy of
the disaggregator quickly decreases as more appliances are
added for disaggregation. Such a disaggregation requires a
high degree of computational power to disaggregate.

Recently, Johnson et al. [10] considered using the factorial
variant of a hidden semi-Markov model (HSMM) [11], [12]
because it provided a means of representing state durations
in a load model. They introduced the idea of change-point
detection as a way to rule out observations that would not
present a learning opportunity for active tuning or infer a
state change. This allowed them to reduce the computational
complexity. Although the authors claim this was unsupervised,
they were incorrect, as labelled data from the same dataset was
used for training and than testing. Their models are specific to
a given dataset or house. Rather then having their algorithm
run on the entire dataset, specific hand-picked segments of data
were used, which does not constitute a real-world scenario.

Guo et al. [13] used explicit duration difference HMMs
(EDHMM-diff) and a modified forward-backward algorithm
to disaggregate a fridge and clothes dryer. They down sample
from 1-3 second sampling to 30 seconds sampling using
the REDD dataset [6]. Using a difference model allowed
them to actively tune their general appliance models using a
detect and re-estimate approach for the difference in spikes
in Ay = y;—1 — y, where y is the observed aggregate
power signal at the previous ¢ — 1 and current time t. The
authors claim that the REDD dataset provides “no reliable
ground truth” — this makes it hard to verify the claims of
their disaggregator. They also model the fridge and clothes
dryer as having just 2 states, OFF and ON. This is not usually
the case for clothes dryers, which can have 3—4 states: OFF,
STANDBY, DRY, and COOL_DOWN.

The authors above assume Hart’s SCP. Section IV shows
that the amount of data in datasets that give opportunities
for unsupervised learning is very small. Therefore, testing

accuracy claims with datasets bring a high amount of skepti-
cism. Parson [3, Fig. 8], on the other hand, has shown how
actively tuning the general models of fridges and freezers
during the night can better ensure that the SCP can be relied
upon; especially for these type of appliances that consume low
amounts of power (100—200W) and are cyclical in nature.

III. EXPERIMENTAL SETUP
A. Experiment Definition & Algorithm

The experiment’s definition is simple. Collect statistics on
the amount of times state changes occur and the number of
appliances that change state within a given dataset.

The procedure used in this experiment and to collect
statistics is listed in Algorithm 1. Once the dataset is loaded
(line 1), each appliance’s sub-meter data is used to create a
histogram. This histogram is then quantized — meaning that
the histogram is algorithmically examined to determine the
appliance’s states. Significant peaks or spikes in the histogram
are treated as distinguishable states — one state corresponding
to one peak (lines 2—4). This method of determining appli-
ance states has been used and discussed in previous NILM
experiments [7], [14], [15]. Next, for each reading within that
dataset (line 5), the state of each appliance is determined for
that reading and stored in a list/vector (line 6). The current
vector of appliance states is compared to the previous vector
of appliance states. If these two vectors are different then
one or more appliances have changed state (line 7). If so,
the number of appliances that have changed state is recorded
(line 8) and resulting statistics appear in Table I. Finally the
current vector is stored as the previous vector for comparison
to the next dataset reading (line 10). The process is repeated
until all readings in the dataset are processed.

Algorithm 1 CALC-DATASET-STATE-CHANGE-STATISTICS

1: data < load_dataset(dataset_name)
for each appliance do
models|appliance] < create_model(appliance)
end for
for each reading € data do
statesy < calc_current_states(reading, models)
if states; # states;_, then
record number of state changes
end if
states;_1 < states;
: end for
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B. Experimental Datasets

In Hart’s tests, multiple loads switching states accounted
for 4% of the reading collected at a sampling rate of 2—
3 seconds. Since 1992, homes have more energy efficient,
multi-state appliances. It would also be interesting to see if
this principle holds true for even lower frequency sampled
datasets. For the purpose of this test three popular datasets
that NILM researchers used were chosen: AMPds R2013 [4],
AMPds v2 [5], and REDD [6]. AMPds R2013 is a dataset
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Fig. 1. Stacked bar charts of simultaneous appliance state changes data listed in Table I Chart (a) shows the percentage of the dataset where no state changes
occur, one state change occurs, and more than one state change occurs. Chart (b) shows what percentage of the dataset where unsupervised learning can occur.
Tests 1 and 2 use data from the AMPds R2013 dataset. Tests 3 to 8 use data from the APMds v2 dataset. The remaining tests use data from each of the six
houses in the REDD dataset.

TABLE I
COMPARING THE NUMBER OF LOAD SIMULTANEOUS ON EVENTS

Test ID | Dataset Unit Precision | Appliances | No Events | 1 Event | 2 Events | 3 Events | 4 Events | 5 or More
1 | AMPds R2013 Current | dA 19 386,962 | 115,823 19,212 2,317 214 15

2 | AMPds R2013 Current | A 19 474,981 46,699 2,661 197 5 0

3 | AMPds v2 Current | dA 19 793,652 | 219,257 33,724 4,115 411 40

4 | AMPds v2 Current | A 19 951,124 94,236 5,456 366 17 0

5 AMPds v2 Power w 19 145,344 367,387 321,554 154,776 49,087 13,051

6 AMPds v2 Power daWw 19 760,995 243,954 40,750 4,967 492 41

7 | AMPds v2 Power hW 19 919,597 | 121,857 9,077 640 27 1

8 | REDD House 1 | Power w 10 346,950 51,178 6,762 903 578 376

9 | REDD House 2 | Power w 8 232,928 75,386 7,536 845 120 24

10 | REDD House 3 | Power w 12 169,983 | 143,861 50,053 10,157 1,646 449

11 REDD House 4 | Power w 11 169,754 169,594 69,020 16,642 2,700 365

12 | REDD House 5 | Power w 14 38,096 29,032 8,766 1,385 134 37

13 | REDD House 6 | Power w 11 112,108 55,891 21,221 2,624 227 120

that has a sampling rate of once per minute and contains one IV. FINDINGS & RESULTS

year’s worth of data. AMPds v2 is also sampled at once per
minute but contains two year’s worth of data. REDD has a
sampling rate of every 2-3 seconds and contains approximately
one month’s worth of data for six houses — the number of
occupants is not known. AMPds has only one house, R2013
has three occupants and v2 has four occupants.

A series of 13 tests were performed on the three datasets
identified above. Previously, I introduced five caveats to SCP:
number of occupants, number of appliances, measurement
unit, measurement precision, and measurement sampling fre-
quency. For this analysis refer to Table I and Figure 1(a).

Although my tests were not able to test how the number



of occupants affects SCP, I think that is it easily understood
that this can be the case — the more occupants the more
simultaneous activity there is. For the number of appliances,
when comparing real power tests between AMPds and REDD
it is clear that AMPds (which has many more appliances) has
a greater amount of simultaneous appliance state changes.

The measurement unit chosen has a curious effect on SCP.
When we compare the measurement of current (Tests 3 and
4) vs real power (Tests 5, 6, and 7) we can see that Test 5 (in
watts) has a very large percent of simulations events (59.4%)
compared to Test 4 (in amps, 5.8%). However, the results are
very close if we compare Test 3 (in deci-amps) and Test 6 (in
deca-watts). This is due to how the meter rounds off measured
numbers — there is more precision in the measurement of
power than current due to the simple fact that P =V x I [16].

The lower the measurement precision, the lower the per-
centage of simultaneous events (see Test 1 vs Test 2, Test 3
vs Test 4, and Test 5 vs Test 6 vs Test 7) that have a positive
effect on SCP. However, there would be a decrease in the
accuracy of appliance consumption estimation. I did run tests
that compared each of the six REDD houses using different
precision (W vs daW) but found that the results were identical.
This might be due to the fact that REDD only has about
one month of data capture and that the houses used seem to
be smaller. Another observation is the little difference in the
results of one year of capture (Tests 1 and 2) vs two years
of capture (Tests 3 and 4). This seems to suggest that the
variations in appliance usage have been captured over these
long periods of time.

Measurement sampling frequency has negative affects on
SCP as the lower the sampling frequency, the more appliances
will have changed their state within the sampling period.
Again, no direct tests were possible, but this is a well un-
derstood fact.

The above results show that the low amount of simultaneous
events (4%) that Hart found in his field test [2] was not
achievable in the datasets I tested. The best that could be
achieved was 5.8% in Tests 2 and 4. The next best was 7.4%
in Test 7. Averaging the test results shows that 20.8% of
the time simultaneous events (more than one load switching
state) will occur. This may very well be due to the fact that
houses contain more appliances that are multi-state and are
more energy efficient.

Finally, Figure 1(b) shows that learning opportunities for
unsupervised NILM algorithms are rare in these datasets only
occurring on average 24% of the time. A learning opportunity
is defined as a point in time were there is only one appli-
ance that changes state. This means that unsupervised NILM
algorithms would need to learn from datasets that have long-
term captures of house and appliance data to be able to report
credible testing accuracy and performance results.

V. CONCLUSIONS

This paper has presented experimental results that show
Hart’s switch continuity principle can still hold true, in some

cases (small homes/apartments). The small amount of simul-
taneous events (4%) that Hart found in 1992 is no longer the
case. I have found that it has increased to 20.8% on average
especially when there are a large number of appliances in a
home. With this increase in appliances the mix and profile
of appliances within many homes has changed over the last
24 years. For example, the increase in multi-state, energy
efficient appliances. The experimental results also show that
in the case of unsupervised NILM algorithms only 24% (on
average) of a dataset can be relied upon for learning where
there is only one appliance that changes state. To truly test the
robustness of unsupervised NILM, large long-running datasets
are needed because the number of learning opportunities are
rare. This rarity makes it hard to claim solid testing accuracy
and performance of unsupervised NILM algorithms.
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