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Objectives Innovativeness of the Research Results — Forecasting

» To develop a residential » Proposed efficient method for estimating time-of-day joint state Results for REDD [4] dataset:
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» To forecast future power

Results for AMPds2 [5] data set:

consfumptlon Of individual Step 1: Construction of Appliance Features 25| o bro e oo etext
appliances, which can be used — T Step 6: Appliance || o [ s s |, shaetesine
for dynam|c demand-side Profiles state forecasting Proposed method Benchmarks |
Contextfree | Seasonal context | AR | MA | ‘rqg
man ment. Winter 42 39 97 [ 109 | o
anagement ! | | } Step 4: Estimate the Sprine |39 3 92 2| S0
o This is called non-intrusive load fSpectral] [Me‘clm plower] [ Timz 0; :iay ] ON/OFF-state J r*| time of day joint e b Belise| s
. . t ilit i ili i feas
monitoring (NILM).  features evels pro a:\ ility ) [ duration probability i probabilities o) - ST

X X 60 120
1 1 Forecasting Time (Miniutes)
i

lem

Step 2: Feature Extraction from aggregated

the total delivered energy
consumed worldwide [1].

* A meta-study has shown when
occupants understand how
appliances consume energy
they can reduce consumption
by 14% [2].

» That is a reduction of about
0.6 trillion kWh of electricity
consumed per year.

» Savings will increase per year
to 1 trillion kWh by 2050.
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Step 5: Appliance state identification at

the current time
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Results for AMPds2 [5] data set:
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