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Results – Forecasting

Results – Appliance State Identification

• To develop a residential 
appliance state identification 
method without individual 
sensors, and with:

ü high identification accuracy

ü low computational time 

• To forecast future power 
consumption of individual 
appliances, which can be used 
for dynamic demand-side 
management.

• This is called non-intrusive load 
monitoring (NILM).

Objectives

Impact

• In 2016, residential and com-
mercial buildings used 20% of 
the total delivered energy 
consumed worldwide [1].

• A meta-study has shown when 
occupants understand how 
appliances consume energy 
they can reduce consumption 
by 14% [2].

• That is a reduction of about 
0.6 trillion kWh of electricity 
consumed per year. 

• Savings will increase per year 
to 1 trillion kWh by 2050.
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Results for REDD [4] dataset:

MAPE – mean absolute percentage error
AR – autoregressive, MA – moving 
average

Results for AMPds2 [5] data set:

Results for REDD [4] dataset:

Results for AMPds2 [5] data set:
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Innovativeness of the Research

• Proposed efficient method for estimating time-of-day joint state 
probabilities for a set of appliances.

• Joint probabilities used to more accurately identify appliance states 
and improve convergence speed of the algorithm.

• Appliance state identification used to forecast future power 
consumption.
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